This page is read only. You can view the source, but not change it. Ask your administrator if you think this is wrong. ====== Motion Analysis and Visualization Script ====== A Python script that reads motion data from CSV files, computes spatial metrics like the center of position and average distance from the center over time, performs Lomb-Scargle periodogram analysis, and saves analyzed results as Numpy arrays. It utilizes libraries such as Pandas for data manipulation, Matplotlib and mplEasyAnimate for visualization, and Scipy for signal processing. <code python> import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from tqdm import tqdm import numpy as np from mplEasyAnimate import animation from scipy.signal import lombscargle import os def frameToArray(frame): start = 1 vecs = np.zeros(shape=(int((frame.shape[0]-1)/3), 3)) for itr, end in enumerate(range(4, frame.shape[0]+3, 3)): vecs[itr] = np.array(frame[start:end]) start = end return vecs def CalcCenterOfPos(frame): vecs = frameToArray(frame) return vecs.mean(axis=0) def CenterOfPosEvolution(df): COPs = np.zeros(shape=(df.shape[0], 3)) times = df['Time'].values for itr, frame in tqdm(df.iterrows(), total=df.shape[0]): COPs[itr] = CalcCenterOfPos(frame) return COPs, times def getAvgPosFromCenter(frame): COP = CalcCenterOfPos(frame) vecs = frameToArray(frame) return np.abs(vecs-COP).mean(axis=0) def getAvgDistFromCenter(frame): COP = CalcCenterOfPos(frame) vecs = frameToArray(frame) return np.mean(np.sqrt(np.sum(np.power(np.subtract(COP, vecs), 2), axis=1))) def evolveAvgPosFromCenter(df): SEPs = np.zeros(shape=(df.shape[0], 3)) times = df['Time'].values for itr, frame in tqdm(df.iterrows(), total=df.shape[0]): SEPs[itr] = getAvgPosFromCenter(frame) return SEPs, times def evolveAvgDistFromCenter(df): SEPs = np.zeros(shape=(df.shape[0],)) times = df['Time'].values for itr, frame in tqdm(df.iterrows(), total=df.shape[0]): SEPs[itr] = getAvgDistFromCenter(frame) return SEPs, times def genLSP(t, y, s=None): nyquist = 1/(2*(t[1]-t[0])) res = (t[1]-t[0])/t.shape[0] if not s: s = int(1/res) f = 2*np.pi*np.linspace(res/10, 0.5, s) pgram = lombscargle(t, y, f, normalize=True) return f, pgram if __name__ == "__main__": root = "Downloaded_Data/CSVs" files = os.listdir(root) files = [x for x in files if x[0] != '.'] for file in tqdm(files): df = pd.read_csv('{}/{}'.format(root, file), header=6) df = df.rename(columns={ df.columns[0]: "Time" }) SEPs, times = evolveAvgDistFromCenter(df) name = file.split('.')[0] np.save('AnalyzedData/AvgDistFromCenter_{}.npy'.format(name), np.vstack([times, SEPs])) </code>