====== Astrophysical Data Loading Script ====== This script is designed to load and parse astrophysical data from .trk (track) and .iso (isochrone) files, commonly used in stellar model simulations. The script reads the specified files to extract metadata and data tables, providing an option to save the loaded data as a pickle file. It leverages libraries such as pandas for data manipulation, re for regular expression operations, and argparse for command-line argument parsing. Additionally, the script sorts loaded models based on key attributes like mass, facilitating further analysis of stellar properties. import re import pandas as pd import numpy as np import os import itertools import argparse import pickle def load_iso(path): header = ["Age", "Log_T", "Log_g", "Log_L", "Log_R", "Y_core", "Z_core", "(Z/X)_surf", "L_H", "L_He", "M_He_core", "M_CO_core"] iso = pd.read_csv(path, delim_whitespace=True, names=header, comment='#') with open(path, 'r') as f: metadata_str = f.readline() metadata_str = metadata_str.strip('#').lstrip().rstrip().split(' ')[:3] metadata = dict() for i, data_elem in enumerate(metadata_str): keyvalue = data_elem.split('=') metadata[keyvalue[0]] = float(keyvalue[1]) return iso, metadata def get_trk_metadata(line): mass_search = re.compile('(?<=Total mass = ).*?(?=\s)') mixing_length_search = re.compile('(?<=Mixing length = ).*?(?=\s)') EOS_search = re.compile('(?<=EOS = ).*?(?=\s)') Atm_search = re.compile('(?<=Atm = ).*?(?=\s)') Low_T_opacities_search = re.compile('(?<=Low T opacities = ).*?(?=\s)') mass = mass_search.search(line) mixing_length = mixing_length_search.search(line) EOS = EOS_search.search(line) Atm = Atm_search.search(line) Low_T_opacities = Low_T_opacities_search.search(line) meta = {'Mass':float(mass.group()), 'Mixing Length': float(mixing_length.group()), 'EOS': EOS.group(), 'Atm':Atm.group(), 'Low T Opacities': Low_T_opacities.group()} return meta def load_trk(path): header = [ "Model_#", "shells", "AGE", "log_L", "log_R", "log_g", "log_Teff", "Mconv_core", "Mconv_env", "Rconv_env", "M_He_core", "Xenv", "Zenv", "L_ppI", "L_ppII", "L_ppIII", "L_CNO", "L_triple-alpha", "L_He-C", "L_gravity", "L_neutrinos_old", "L_%_Grav_eng", "L_Itot", "C_log_T", "C_log_RHO", "C_log_P", "C_BETA", "C_ETA", "C_X", "C_Z", "C_H" "C_shell_midpoint", "C_H_shell_mass", "C_T_at_base_of_cz", "C_rho_at_base_of_cz","CA_He3", "CA_C12", "CA_C13", "CA_N14", "CA_N15", "CA_O16", "CA_O17", "CA_O18", "SA_He3", "SA_C12", "SA_C13", "SA_N14", "SA_N15", "SA_O16", "SA_O17","SA_O18", "N_pp", "N_pep", "N_hep", "N_Be7", "N_B8", "N_N13", "N_O15", "N_F17", "Cl37_flux", "Ga71_flux"] trk = pd.DataFrame(columns=header) with open(path, 'r') as trk_file: all_lines = trk_file.readlines() metadata = get_trk_metadata(all_lines[4]) lines = [x.lstrip().rstrip().split() for x in all_lines[14:]] merged_lines = [x+y+z+w+q for x, y, z, w, q in zip(lines[::6], lines[1::6], lines[2::6], lines[3::6], lines[4::6], lines[5::6])] numeric_lines = [[float(y) for y in x] for x in merged_lines] for index, row in enumerate(numeric_lines): trk.loc[index] = row return trk, metadata def load_trk_models(path): trks = list() metas = list() for file in os.listdir(path): if file.endswith('.trk'): print(file) trk, meta = load_trk(os.path.join(path, file)) trks.append(trk) metas.append(meta) trks, metas = sort_based_on_key(trks, metas, key='Mass') return trks, metas def load_iso_models(path): isos = list() metas = list() for file in os.listdir(path): if file.endswith('.iso'): iso, metadata = load_iso(os.path.join(path, file)) isos.append(iso) metas.append(metadata) isos, metas = sort_based_on_key(isos, metas, key='M') return isos, metas def load(path): functions = {'track': load_trk, 'iso': load_iso} suffix = args.path.split('.')[-1] data, metadata = functions[suffix](args.path) return data, metadata if __name__ == "__main__": parser = argparse.ArgumentParser(description="Load data from a dsep3 trk or iso file") parser.add_argument("path", help="path to file", type=str) parser.add_argument("-o", "--output", help="path to save as pickle", type=str) args = parser.parse_args() data, metadata = load(args.path) if args.output: data_package = {"data": data, "metadata": metadata} pickle.dump(data_package, open(args.output, "wb")) else: print("========= METADATA ===========") for key in metadata: print(f"{key}: {metadata[key]}") print("=========== DATA =============") for index, row in data.iterrows(): print(row)