====== Astrophysical Data Processing for Stellar Models ====== This script is designed for loading and processing astrophysical data files, specifically for stellar models, in '.trk' (track files) and '.iso' (isochrone files) formats. It includes functionalities for parsing these files, extracting metadata, handling data via Pandas DataFrames, and saving processed data objects into a pickled format for later use. The program supports command-line arguments for specifying the input file and an optional output file, demonstrating its utility in scientific data analysis and computational astrophysics workflows. import re import pandas as pd import numpy as np import os import itertools import argparse import pickle def load_iso(path): header = ["Age", "Log_T", "Log_g", "Log_L", "Log_R", "Y_core", "Z_core", "(Z/X)_surf", "L_H", "L_He", "M_He_core", "M_CO_core"] iso = pd.read_csv(path, delim_whitespace=True, names=header, comment='#') with open(path, 'r') as f: metadata_str = f.readline() metadata_str = metadata_str.strip('#').lstrip().rstrip().split(' ')[:3] metadata = dict() for i, data_elem in enumerate(metadata_str): keyvalue = data_elem.split('=') metadata[keyvalue[0]] = float(keyvalue[1]) return iso, metadata def get_trk_metadata(line): mass_search = re.compile('(?<=Total mass = ).*?(?=\s)') mixing_length_search = re.compile('(?<=Mixing length = ).*?(?=\s)') EOS_search = re.compile('(?<=EOS = ).*?(?=\s)') Atm_search = re.compile('(?<=Atm = ).*?(?=\s)') Low_T_opacities_search = re.compile('(?<=Low T opacities = ).*?(?=\s)') mass = mass_search.search(line) mixing_length = mixing_length_search.search(line) EOS = EOS_search.search(line) Atm = Atm_search.search(line) Low_T_opacities = Low_T_opacities_search.search(line) meta = {'Mass':float(mass.group()), 'Mixing Length': float(mixing_length.group()), 'EOS': EOS.group(), 'Atm':Atm.group(), 'Low T Opacities': Low_T_opacities.group()} return meta def load_trk(path): header = [ "Model_#", "shells", "AGE", "log_L", "log_R", "log_g", "log_Teff", "Mconv_core", "Mconv_env", "Rconv_env", "M_He_core", "Xenv", "Zenv", "L_ppI", "L_ppII", "L_ppIII", "L_CNO", "L_triple-alpha", "L_He-C", "L_gravity", "L_neutrinos_old", "L_%_Grav_eng", "L_Itot", "C_log_T", "C_log_RHO", "C_log_P", "C_BETA", "C_ETA", "C_X", "C_Z", "C_H" "C_shell_midpoint", "C_H_shell_mass", "C_T_at_base_of_cz", "C_rho_at_base_of_cz","CA_He3", "CA_C12", "CA_C13", "CA_N14", "CA_N15", "CA_O16", "CA_O17", "CA_O18", "SA_He3", "SA_C12", "SA_C13", "SA_N14", "SA_N15", "SA_O16", "SA_O17","SA_O18", "N_pp", "N_pep", "N_hep", "N_Be7", "N_B8", "N_N13", "N_O15", "N_F17", "Cl37_flux", "Ga71_flux"] trk = pd.DataFrame(columns=header) with open(path, 'r') as trk_file: all_lines = trk_file.readlines() metadata = get_trk_metadata(all_lines[4]) lines = [x.lstrip().rstrip().split() for x in all_lines[14:]] merged_lines = [x+y+z+w+q for x, y, z, w, q in zip(lines[::6], lines[1::6], lines[2::6], lines[3::6], lines[4::6], lines[5::6])] numeric_lines = [[float(y) for y in x] for x in merged_lines] for index, row in enumerate(numeric_lines): trk.loc[index] = row return trk, metadata def load_trk_models(path): trks = list() metas = list() for file in os.listdir(path): if file.endswith('.trk'): print(file) trk, meta = load_trk(os.path.join(path, file)) trks.append(trk) metas.append(meta) trks, metas = sort_based_on_key(trks, metas, key='Mass') return trks, metas def load_iso_models(path): isos = list() metas = list() for file in os.listdir(path): if file.endswith('.iso'): iso, metadata = load_iso(os.path.join(path, file)) isos.append(iso) metas.append(metadata) isos, metas = sort_based_on_key(isos, metas, key='M') return isos, metas def load(path): functions = {'track': load_trk, 'iso': load_iso} suffix = args.path.split('.')[-1] data, metadata = functions[suffix](args.path) return data, metadata if __name__ == "__main__": parser = argparse.ArgumentParser(description="Load data from a dsep3 trk or iso file") parser.add_argument("path", help="path to file", type=str) parser.add_argument("-o", "--output", help="path to save as pickle", type=str) args = parser.parse_args() data, metadata = load(args.path) if args.output: data_package = {"data": data, "metadata": metadata} pickle.dump(data_package, open(args.output, "wb")) else: print("========= METADATA ===========") for key in metadata: print(f"{key}: {metadata[key]}") print("=========== DATA =============") for index, row in data.iterrows(): print(row)