====== Data Loading and Processing for Stellar Evolution Models ====== This script is designed for loading and processing data from dsep3 track (trk) and isochrone (iso) files related to stellar evolution models. It includes functionalities for parsing metadata and data from these files, handling file paths and user arguments for operational flexibility, and optionally saving processed data as pickles. The script combines various Python libraries, such as pandas and argparse, to manipulate and organize data efficiently for further analysis or visualization in astrophysical research. import re import pandas as pd import numpy as np import os import itertools import argparse import pickle def load_iso(path): header = ["Age", "Log_T", "Log_g", "Log_L", "Log_R", "Y_core", "Z_core", "(Z/X)_surf", "L_H", "L_He", "M_He_core", "M_CO_core"] iso = pd.read_csv(path, delim_whitespace=True, names=header, comment='#') with open(path, 'r') as f: metadata_str = f.readline() metadata_str = metadata_str.strip('#').lstrip().rstrip().split(' ')[:3] metadata = dict() for i, data_elem in enumerate(metadata_str): keyvalue = data_elem.split('=') metadata[keyvalue[0]] = float(keyvalue[1]) return iso, metadata def get_trk_metadata(line): mass_search = re.compile('(?<=Total mass = ).*?(?=\s)') mixing_length_search = re.compile('(?<=Mixing length = ).*?(?=\s)') EOS_search = re.compile('(?<=EOS = ).*?(?=\s)') Atm_search = re.compile('(?<=Atm = ).*?(?=\s)') Low_T_opacities_search = re.compile('(?<=Low T opacities = ).*?(?=\s)') mass = mass_search.search(line) mixing_length = mixing_length_search.search(line) EOS = EOS_search.search(line) Atm = Atm_search.search(line) Low_T_opacities = Low_T_opacities_search.search(line) meta = {'Mass':float(mass.group()), 'Mixing Length': float(mixing_length.group()), 'EOS': EOS.group(), 'Atm':Atm.group(), 'Low T Opacities': Low_T_opacities.group()} return meta def load_trk(path): header = [ "Model_#", "shells", "AGE", "log_L", "log_R", "log_g", "log_Teff", "Mconv_core", "Mconv_env", "Rconv_env", "M_He_core", "Xenv", "Zenv", "L_ppI", "L_ppII", "L_ppIII", "L_CNO", "L_triple-alpha", "L_He-C", "L_gravity", "L_neutrinos_old", "L_%_Grav_eng", "L_Itot", "C_log_T", "C_log_RHO", "C_log_P", "C_BETA", "C_ETA", "C_X", "C_Z", "C_H" "C_shell_midpoint", "C_H_shell_mass", "C_T_at_base_of_cz", "C_rho_at_base_of_cz","CA_He3", "CA_C12", "CA_C13", "CA_N14", "CA_N15", "CA_O16", "CA_O17", "CA_O18", "SA_He3", "SA_C12", "SA_C13", "SA_N14", "SA_N15", "SA_O16", "SA_O17","SA_O18", "N_pp", "N_pep", "N_hep", "N_Be7", "N_B8", "N_N13", "N_O15", "N_F17", "Cl37_flux", "Ga71_flux"] trk = pd.DataFrame(columns=header) with open(path, 'r') as trk_file: all_lines = trk_file.readlines() metadata = get_trk_metadata(all_lines[4]) lines = [x.lstrip().rstrip().split() for x in all_lines[14:]] merged_lines = [x+y+z+w+q for x, y, z, w, q in zip(lines[::6], lines[1::6], lines[2::6], lines[3::6], lines[4::6], lines[5::6])] numeric_lines = [[float(y) for y in x] for x in merged_lines] for index, row in enumerate(numeric_lines): trk.loc[index] = row return trk, metadata def load_trk_models(path): trks = list() metas = list() for file in os.listdir(path): if file.endswith('.trk'): print(file) trk, meta = load_trk(os.path.join(path, file)) trks.append(trk) metas.append(meta) trks, metas = sort_based_on_key(trks, metas, key='Mass') return trks, metas def load_iso_models(path): isos = list() metas = list() for file in os.listdir(path): if file.endswith('.iso'): iso, metadata = load_iso(os.path.join(path, file)) isos.append(iso) metas.append(metadata) isos, metas = sort_based_on_key(isos, metas, key='M') return isos, metas def load(path): functions = {'track': load_trk, 'iso': load_iso} suffix = args.path.split('.')[-1] data, metadata = functions[suffix](args.path) return data, metadata if __name__ == "__main__": parser = argparse.ArgumentParser(description="Load data from a dsep3 trk or iso file") parser.add_argument("path", help="path to file", type=str) parser.add_argument("-o", "--output", help="path to save as pickle", type=str) args = parser.parse_args() data, metadata = load(args.path) if args.output: data_package = {"data": data, "metadata": metadata} pickle.dump(data_package, open(args.output, "wb")) else: print("========= METADATA ===========") for key in metadata: print(f"{key}: {metadata[key]}") print("=========== DATA =============") for index, row in data.iterrows(): print(row)