====== Modeling Brown Dwarf Evolution Influenced by Close M-dwarf Companion ====== === RudModel.ipynb === This Jupyter notebook outlines a model to simulate the evolution of a brown dwarf when influenced by a close M-dwarf companion. The model includes importing necessary libraries such as numpy, scipy, and matplotlib for numerical computations and plotting, along with a specific library for astronomical simulations. It details the initialization of constants like solar luminosity, radius, and mass, alongside brown dwarf parameters. It further describes the loading of an MDwarf model, the creation and normalization of various functions for the model, and the establishment of classes for modeling the interaction between a brown dwarf and its M-dwarf companion, specifically focusing on the aspects of flaring events, luminosity calculations, and temperature variations over time due to these stellar interactions. The model attempts to quantify how such interactions, particularly flaring events from the M-dwarf, could affect the temperature evolution of a brown dwarf, including detailed methods for calculating incident luminosity, orbital parameters, and resulting surface parameters and temperatures over significant time scales. ```python import numpy as np import scipy import matplotlib.pyplot as plt from pysep.dsep import load_model from scipy.interpolate import interp1d from tqdm.notebook import tqdm from scipy.optimize import curve_fit try: plt.style.use(pubStyle) except NameError: pass ``` ```python SLUM = 3.846e33 # ergs / s SRAD = 6.957e+10 # cm SMASS = 1.989e+33 # g BDLUM = 1/100_000 # L/Lsolar BDTEMP = 1000 # K BDRAD = 1.001e+10 # cm sb = 5.670374419e-5 # cgs kb = 1.3807e-16# cm2 g s-2 K-1 (cgs BDATMMFRAC = 0.00001 #0.000001 G = 6.67430e-8 # cgs ``` ```python basedMDwarfModel = load_model("model.dsep") ``` ```python def PosNormal(mean, sigma): x = np.random.normal(loc = mean, scale = sigma, size=1)[0] return(x if x>=0 else PosNormal(mean,sigma)) ``` ```python def normalize(a): if a.max() == a.min(): return a return a - a.min()/(a.max()-a.min()) ``` ```python def interpTRK(targetAge, df): ages = df.AGE closestGreater = ages[ages > targetAge].min() closestLess = ages[ages < targetAge].max() row_closest_less = df[df['AGE'] == closestLess] row_closest_greater = df[df['AGE'] == closestGreater] fraction = (targetAge - closestLess) / (closestGreater - closestLess) interpolated_row = row_closest_less.drop(columns=['AGE']).reset_index(drop=True) + \ fraction * (row_closest_greater.drop(columns=['AGE']).reset_index(drop=True) - row_closest_less.drop(columns=['AGE']).reset_index(drop=True)) return interpolated_row ``` ```python def generate_flare_events_array(timeArraySize, flareProp): randomNumbers = np.random.rand(timeArraySize) flareEventsArray = randomNumbers < flareProp return flareEventsArray ``` ```python def build_flare(t12): trise = t12[t12 <= 0] tdecay = t12[t12 > 0] frise = 1 + 1.941*trise - 0.175*trise**2 - 2.246*trise**3 - 1.1225 * trise**4 fdecay = 0.6890 * np.exp(-1.6 * tdecay) + 0.3030*np.exp(-0.2783 * tdecay) return np.hstack([frise, fdecay]) ``` ```python class TriangulatedSphere: _SLUM = 3.846e33 _SRAD = 6.957e+10 def __init__(self, nTheta, nPhi, times, model, modelAge=5, noiseScale=0.1): trk = interpTRK(modelAge, model.trk) self.radius = 10**trk.log_R.values[0] * self._SRAD self.lum = 10**trk.log_L.values[0] * self._SLUM self.nTheta = nTheta self.nPhi = nPhi self.times = times self.fluxMap = np.zeros((times.shape[0], nTheta, nPhi)) self.thetaValues = np.linspace(0, np.pi, nTheta ) self.phiValues = np.linspace(0, 2 * np.pi, nPhi) self.surfaceArea = 4 * np.pi * self.radius**2 self.triangleArea = self.surfaceArea / (nTheta * nPhi) self.meanFlux = (self.lum)/(4*np.pi * (self.radius)**2) self.set_overall_flux(self.meanFlux) self.noiseLevel = noiseScale*self.meanFlux def set_overall_flux(self, flux): """Set the same flux value for the entire surface.""" self.fluxMap[:, :, :] = flux def set_overall_flux_at_time(self, flux, time): tID = self.time_to_index(time) self.fluxMap[tID, :, :] = flux def incriment_overall_flux_at_time(self, df, time): tID = self.time_to_index(time) self.fluxMap[tID, :, :] += df def set_flux_at(self, theta, phi, flux, time): iTheta, iPhi = self.theta_phi_to_index(theta, phi) tID = self.time_to_index(time) self.fluxMap[tID, iTheta, iPhi] = flux def get_flux_at(self, theta, phi, time): iTheta, iPhi = self.theta_phi_to_index(theta, phi) tID = self.time_to_index(time) return self.fluxMap[tID, iTheta, iPhi] def get_luminosity_over_solid_angle(self, thetaCenter, phiCenter, omega, time, solar=False): # Convert time to indices if isinstance(time, float): tIDs = np.array([self.time_to_index(time)]) elif isinstance(time, slice): tIDs = np.array([self.time_to_index(t) for t in self.times[time]]) elif isinstance(time, str) and time == '*': tIDs = np.arange(len(self.times)) lums = np.zeros(len(tIDs)) thetaGrid, phiGrid = np.meshgrid(self.thetaValues, self.phiValues, indexing='ij') distance = self.angular_distance_vectorized(thetaGrid, phiGrid, thetaCenter, phiCenter) withinSolidAngle = distance < np.sqrt(omega / np.pi) for i, tID in enumerate(tIDs): if solar: lums[i] = np.sum(self.fluxMap[tID, withinSolidAngle] * self.triangleArea / self._SLUM) else: lums[i] = np.sum(self.fluxMap[tID, withinSolidAngle] * self.triangleArea) return lums @staticmethod def angular_distance_vectorized(theta1, phi1, theta2, phi2): """Vectorized calculation of angular distance.""" return np.arccos(np.sin(theta1) * np.sin(theta2) + np.cos(theta1) * np.cos(theta2) * np.cos(phi1 - phi2)) def index_to_theta_phi(self, iTheta, iPhi): """Convert grid indices to theta and phi values.""" return self.thetaValues[iTheta], self.phiValues[iPhi] def theta_phi_to_index(self, theta, phi): iTheta = np.argmin(np.abs(self.thetaValues - theta)) iPhi = np.argmin(np.abs(self.phiValues - phi)) return iTheta, iPhi def index_to_time(self, tID): return self.times[tID] def time_to_index(self, time): return np.argmin(np.abs(self.times - time)) def evolve(self, flareProb, flareMeanDuration, flareMeanAmplitude, flareMeanLat, flareDurationScale, flareAmplitudeScale, flareLatScale): flareDecisions = np.random.uniform(0, 1, size=len(self.times)) < flareProb flareDurations = np.abs(np.random.normal(loc=flareMeanDuration, scale=flareDurationScale, size=flareDecisions.sum())) flareAmplitudes = np.abs(np.random.normal(loc=flareMeanAmplitude, scale=flareAmplitudeScale, size=flareDecisions.sum())) flarePhis = np.radians(np.random.choice([-1, 1], size=flareDecisions.sum())) * np.abs(np.random.normal(loc=flareMeanLat, scale=flareLatScale, size=flareDecisions.sum())) flareThetas = np.random.uniform(0, 2*np.pi, size=flareDecisions.sum()) noise = np.random.normal(loc=0, scale=self.noiseLevel, size=len(self.times)) fID = 0 for tid, (time, doFlare, s) in tqdm(enumerate(zip(self.times, flareDecisions, noise)), total=len(self.times), desc="Evolving"): if doFlare: timeCond = (self.times >= time) & (self.times <= time + flareDurations[fID]) flareTime = np.linspace(-1, 7, timeCond[timeCond==True].shape[0]) flareData = build_flare(flareTime) timeCond = (self.times >= time) & (self.times <= time + flareDurations[fID]) flare = self.meanFlux + (self.meanFlux * flareAmplitudes[fID] * normalize(flareData)) for flareTimeId, (flareFlux, dft) in enumerate(zip(flare, self.times[timeCond])): self.set_flux_at(flareThetas[fID], flarePhis[fID], flareFlux, time + dft) fID += 1 self.incriment_overall_flux_at_time(s, time) ``` ```python estimateParticlesBBN = lambda mass: mass * (0.75 / 1.67e-27 + 0.25 / 6.64e-27 + 1e-9 / 1.15e-26) ``` ```python def incident_luminosity(luminosityA, aR, bR, d): crossSectionalAreaB = np.pi * bR**2 surfaceAreaD = 4 * np.pi * d**2 fractionIncident = crossSectionalAreaB / surfaceAreaD incidentLuminosityB = luminosityA * fractionIncident return incidentLuminosityB ``` ```python def orbital_params(m1, m2, p): Msolar = 1.989e+33 # g mt = m1 + m2 mt = Msolar * mt G = 6.67430e-8 # cgs a = ((p**2 * G * mt)/(4*np.pi**2))**(1/3) # cm return a ``` $$ L = 4\pi R^{2}\sigma T^{4} $$ $$ U = \frac{3}{2} N k_{B} T $$ ```python def calculate_new_surface_params(iL, temp, mass, dt): N = estimateParticlesBBN(mass*BDATMMFRAC) # assume all energy is distributed through the atmosphere Q = iL * dt dT = Q / ((3/2) * N * kb) return temp + dT ``` ```python def cool_blackbody(radius, initialTemperature, mass, delta_time, internal_energy): N = estimateParticlesBBN(mass*BDATMMFRAC) # assume all energy is distributed through the atmosphere Ui = 3/2 * N * kb * initialTemperature initial_luminosity = 4 * np.pi * radius**2 * sb * (initialTemperature)**4 energy_lost = initial_luminosity * delta_time Uf = (Ui - energy_lost) + internal_energy finalTemperature = (2/3 * Uf)/(N*kb) return finalTemperature ``` All units are kept in cgs (roughly, using pi 10 ^ 7 for sec - > year conversion) ```python # Define how many time steps are used. The cadence right now has a probelmatically large effect on the outcome. This needs # to be smoothed out. period = 6 * 3600 orbits = 50 tmax = period * orbits cadence = 30 times = np.arange(0, tmax, cadence) ``` One major issue right now is that the flaring model predicts flares based on the cadence of the data (i.e. a 5% flare rate means that every time step there is a 5 percent change of a flare event. This means that if you increase the observational frequency the number of flares will go up. This needs to be chaged to a flare rate / time) ```python sphere = TriangulatedSphere(model=basedMDwarfModel, times=times, nTheta=5, nPhi=5, noiseScale=0.001) sphere.evolve(0.05, 1000*60, 0.25, 30, 5*60, 1, 10) #sphere.evolve(0.05, 100*60, 0.01, 30, 5*60, 0.1, 10) #flareProb, flareMeanDuration, flareMeanAmplitude, flareMeanLat, flareDurationScale, flareAmplitudeScale, flareLatScale): # Assuming that the components are tidally locked we only need to subtend one hemisphere to get the incident luminosity at any given time hemiLuminosity = sphere.get_luminosity_over_solid_angle(0, 0, omega=2*np.pi, time='*') ``` Evolving: 0%| | 0/36000 [00:00] ![png](media:7a650a09f81d2cb895880d1e4f53652cc84c7d4139a21af15f69598e43dfc9d0:output_22_1.png) Now we will assume that this mean temperature change per orbit (on the hot side) holdes true for ever and evolve this over many many more orbits. We make the assumption that the hot side temperature is independent of the cold side temperature so we first calculate just the hot side temperature|. This allows us to more easily use a lookback time for the cold side temperature latter ```python meanTempChangePerOrbit = np.mean(temps) morbits = 1e9 orbitJump = 5e2 orbits = np.arange(0, morbits, orbitJump) hotSideTemp = np.zeros_like(orbits) coldSideTemp = np.zeros_like(orbits) hottemp = BDTEMP coldtemp = BDTEMP period = 6*3600 #seconds longTimes = np.linspace(0, morbits*period, orbits.shape[0]) bdmass = 0.075 * SMASS intrinsicCoolingCoef = 0.9 initialCooling = hottemp - cool_blackbody(BDRAD, hottemp, bdmass, period*orbitJump, 0) internalEnergy = (3/2) * N * kb * initialCooling * intrinsicCoolingCoef for oID, orbit in tqdm(enumerate(orbits), total=orbits.shape[0]): hottemp += (orbitID + 1) * meanTempChangePerOrbit hottemp = cool_blackbody(BDRAD, hottemp, bdmass, orbitJump * period, internalEnergy) hotSideTemp[oID] = hottemp ``` 0%| | 0/2000000 [00:00 ![png](media:7a650a09f81d2cb895880d1e4f53652cc84c7d4139a21af15f69598e43dfc9d0:output_28_1.png) ```python ``` ```python ```