====== Visualization of Astrophysical Data and Fitting Results ====== === SextenFigures.ipynb === This file contains Python code for processing and visualizing astrophysical data, including manipulating photometry data, normalizing densities, creating color-magnitude diagrams, and plotting fitting results to identify best fits among model populations. It includes custom color schemes for visualization, use of matplotlib for plotting, and procedures for density normalization and scatter plot generation. The notebook likely serves as part of an analysis pipeline in astrophysical research, particularly focusing on the study of globular clusters or similar stellar systems. ```python import matplotlib.pyplot as plt import numpy as np import pandas as pd import os import pickle as pkl from scipy.spatial.distance import cdist from tqdm import tqdm import numpy as np from pathlib import Path from scipy.interpolate import splrep, BSpline from scipy.signal import savgol_filter from pysep.atm.utils import load_new_style from dataclasses import dataclass from collections import namedtuple import matplotlib from scipy.signal import savgol_filter from mplEasyAnimate import animation ``` ```python @dataclass class colorscheme: DartmouthGreen : str = "#00693E" ForestGreen : str = "#12312B" RichForestGreen : str = "#0D1E1C" White : str = "#FFFFFF" Black : str = "#000000" AutumBrown : str = "#643C20" BonfireRed : str = "#9D162E" SpringGreen : str = "#C4DD88" Violet : str = "#B607DE" pallet = namedtuple("pallet", "C0 C1") primary : namedtuple = pallet(DartmouthGreen, Black) seconday : namedtuple = pallet(ForestGreen,AutumBrown) tertiery : namedtuple = pallet(RichForestGreen,BonfireRed) DGcmap =cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF", colorscheme.DartmouthGreen]) ``` ```python PHOTROOT = "/mnt/Astronomy/GraduateSchool/Thesis/GCConsistency/NGC2808/photometry/HUGS/ngc2808/photometry.pkl" ``` ```python def normalize_density(color, mag, density, n=5000): normDensity = np.zeros(shape=color.shape[0]) for IDx, (c, m, d) in tqdm(enumerate(zip(color, mag, density)), total=len(density)): distances = cdist(np.array([[c, m]]), np.array([color, mag]).T)[0] closestIDX= np.argpartition(distances, n) closestDensity = density[closestIDX[:n]] meanNearDensity = np.mean(closestDensity) normalizedDensity = d/meanNearDensity normDensity[IDx] = normalizedDensity return normDensity def normalize_density_magBin(color, mag, density, binSize=0.1): normDensity = np.zeros(shape=color.shape[0]) for IDx, (c, m, d) in tqdm(enumerate(zip(color, mag, density)), total=len(density)): cut = (mag > m-binSize/2) & (mag <= m+binSize/2) binDensity = density[cut] meanBinDensity = np.mean(binDensity) normalizedDensity = d/meanBinDensity normDensity[IDx] = normalizedDensity return normDensity ``` ```python densityCache = "/mnt/Astronomy/packages/localTests/fidanka/MC_1_Density.npz" assert os.path.exists(densityCache), "Density Cache File not Found!" ``` ```python density = np.load(densityCache)['density'] with open(PHOTROOT, 'rb') as f: HUGSPhotometry = pkl.load(f)[1] color = HUGSPhotometry["F275W"] - HUGSPhotometry["F814W"] mag = HUGSPhotometry["F814W"] HUGSPhotometry['density'] = normalize_density_magBin(color, mag, density, binSize=0.3) ``` 100%|████████████████████████████████████████████████████████| 38319/38319 [00:15<00:00, 2418.10it/s] ```python with plt.style.context(pubStyle): fig, axs = plt.subplots(2,3, figsize=(15, 10)) ax1 = axs[0,0] ax2 = axs[1,0] ax3 = axs[0,1] ax4 = axs[1,1] ax5 = axs[0,2] ax6 = axs[1,2] f1 = "F275W" f2 = "F814W" f3 = f2 color = HUGSPhotometry[f1]-HUGSPhotometry[f2] mag = HUGSPhotometry[f3] density = HUGSPhotometry["density"] condF = (color > 1.75) & (color < 5) & (mag < 22) & (mag > 15) colorF = color[condF] magF = mag[condF] densityF = density[condF] ax1.scatter(colorF, magF, s=1, c=colorscheme.DartmouthGreen) ax1.invert_yaxis() ax2.scatter(colorF, magF, s=1, c=densityF, cmap=DGcmap) ax2.invert_yaxis() condZ = (color > 1.75) & (color < 3.5) & (mag < 20) & (mag > 18.1) colorZ = color[condZ] magZ = mag[condZ] densityZ = density[condZ] ax3.scatter(colorZ, magZ, s=1, c=colorscheme.DartmouthGreen) ax3.set_xticklabels([]) ax3.invert_yaxis() # normDensityZ = normalize_density(colorZ, magZ, densityZ) ax4.scatter(colorZ, magZ, s=1, c=densityZ, alpha=1, cmap=DGcmap) ax4.invert_yaxis() # IDs = ["A", "B", "C", "D", "E", "F"] # Axs = [ax1, ax3, ax5, ax2, ax4, ax6] # for ax, l in zip(Axs, IDs): # ax.text(0.9, 0.5, l, transform=ax.transAxes) plt.subplots_adjust(hspace=0) ax1.set_ylabel(f"{f3}", fontsize=23) ax2.set_ylabel(f"{f3}", fontsize=23) # ax3.set_ylabel(f"{f3}", fontsize=23) # ax4.set_ylabel(f"{f3}", fontsize=23) ax2.set_xlabel(f"{f1}-{f2}") ax4.set_xlabel(f"{f1}-{f2}") ax6.set_xlabel(f"{f1}-{f2}") condRGB = (color > 3) & (color < 5) & (mag < 17.5) & (mag > 15) colorRGB = color[condRGB] magRGB = mag[condRGB] densityRGB = density[condRGB] # normDensity = normalize_density(colorRGB, magRGB, densityRGB, n=10) ax5.scatter(colorRGB, magRGB,s=1, c=colorscheme.DartmouthGreen) ax5.invert_yaxis() ax6.scatter(colorRGB, magRGB,s=1, c=densityRGB, cmap=DGcmap) ax6.invert_yaxis() fig.savefig("Figures/DensityMap.png", dpi=300) ``` ![png](media:7bbf01f35c9ab446e1091144b92839d9d3a8d5dc19697cb894ca45a17898c4e4:output_6_0.png) ```python with open("ExampleFidOutput.pkl", 'rb') as f: fiducial = pkl.load(f) ``` ```python with plt.style.context(pubStyle): fig, ax = plt.subplots(1,1,figsize=(10,7)) fig.subplots_adjust(hspace=0) ax.scatter(color, mag, s=1, c=HUGSPhotometry['density'], cmap=DGcmap) ax.set_xlim(1.5, 5) ax.set_ylim(15.5, 22) ax.invert_yaxis() ax.set_xlabel("F275W - F814W", fontsize=23) ax.set_ylabel("F814W", fontsize=23) ax.plot(fiducial['Acolor'], fiducial['mag'], linewidth = 5, color=colorscheme.BonfireRed, label="E") ax.plot(fiducial['Bcolor'], fiducial['mag'], linewidth = 5, color=colorscheme.Violet, label="A", linestyle='dashed') ax.legend(fontsize=23, frameon=False) fig.savefig("Figures/NGC2808Fid.png", dpi=300) # fig.savefig("../static/imgs/NGC2808Fid.png", dpi=200) ``` ![png](media:7bbf01f35c9ab446e1091144b92839d9d3a8d5dc19697cb894ca45a17898c4e4:output_8_0.png) ```python with open("../../../../../../../../Astronomy/GraduateSchool/Thesis/GCConsistency/NGC2808/Analysis/fitting/ReducedResults.denseAlpha.pkl", 'rb') as f: fitResults = pkl.load(f) ``` ```python with plt.style.context(pubStyle): for n in tqdm(range(len(fitResults))): fig, ax = plt.subplots(1,1,figsize=(10,7)) ax.plot(fiducial['Acolor'], fiducial['mag'], linewidth = 5, color=colorscheme.BonfireRed, label="E") ax.plot(fiducial['Bcolor'], fiducial['mag'], linewidth = 5, color=colorscheme.Violet, label="A", linestyle='dashed') ax.set_xlim(1.5, 5) ax.set_ylim(15.5, 22) # print(fitResults[n][0]) ax.set_title(f"n: {n}, chi2: {fitResults[n][0]:0.3f}") A = fitResults[n][2][0] E = fitResults[n][2][1] Acolor = A['F275W'] - A["F814W"] Amag = A["F814W"] Ecolor = E["F275W"] - E["F814W"] Emag = E["F814W"] ax.plot(Acolor, Amag) ax.plot(Ecolor, Emag) ax.invert_yaxis() plt.savefig(f"Figures/bfr-{n}.png") plt.close(fig) ``` ```python nA = 0 nE = 4 with plt.style.context(pubStyle): A = fitResults[nA][2][0] E = fitResults[nE][2][1] print(fitResults[nA][0]) print(fitResults[nE][0]) Acolor = A['WFC3_UVIS_F275W'] - A["WFC3_UVIS_F814W"] Amag = A["WFC3_UVIS_F814W"] Ecolor = E["WFC3_UVIS_F275W"] - E["WFC3_UVIS_F814W"] Emag = E["WFC3_UVIS_F814W"] fig, ax = plt.subplots(1,1,figsize=(10,7)) ASotedIDX = np.argsort(Amag) ax.plot(fiducial['Acolor'], fiducial['mag'], color=colorscheme.BonfireRed, linestyle='dashed', alpha=0.5, label="Fiducial E") ax.plot(savgol_filter(Acolor[ASotedIDX], 10, 2), Amag[ASotedIDX], color=colorscheme.BonfireRed, label="Best Fit E") ax.plot(fiducial['Bcolor'], fiducial['mag'], color=colorscheme.Violet, linestyle='dashed', alpha=0.5, label="Fiducial A") # ax.set_xlim(1.5, 5) # ax.set_ylim(18, 21) ax.plot(Ecolor, Emag, color=colorscheme.Violet, label="Best Fit A") ax.invert_yaxis() ax.legend(frameon=False) # print(fitResults[nA][1][0][3].x) # print(fitResults[nE][1][1][3].x) # print(fitResults[nA][1][0][1]) # print(fitResults[nE][1][1][1]) # print(fitResults[nA][1][0][2]) # print(fitResults[nE][1][1][2]) ax.set_xlabel("F275W - F814W", fontsize=23) ax.set_ylabel("F814W", fontsize=23) fig.savefig("Figures/BestFit.png", dpi=300) ``` 0.07313541839143663 0.132039504646009 ![png](media:7bbf01f35c9ab446e1091144b92839d9d3a8d5dc19697cb894ca45a17898c4e4:output_11_1.png) ```python A ```
WFC3_UVIS_F200LP WFC3_UVIS_F218W WFC3_UVIS_F225W WFC3_UVIS_F275W WFC3_UVIS_F280N WFC3_UVIS_F300X WFC3_UVIS_F336W WFC3_UVIS_F343N WFC3_UVIS_F350LP WFC3_UVIS_F373N ... WFC3_IR_F127M WFC3_IR_F128N WFC3_IR_F130N WFC3_IR_F132N WFC3_IR_F139M WFC3_IR_F140W WFC3_IR_F153M WFC3_IR_F160W WFC3_IR_F164N WFC3_IR_F167N
0 25.978353 33.859351 33.659541 32.988767 30.306583 30.936987 29.587342 29.429675 25.782097 29.467213 ... 23.151844 23.073539 23.116001 23.090822 22.973418 22.967202 22.699599 22.698120 22.487449 22.519156
1 25.954552 33.831236 33.631871 32.952047 30.279008 30.905088 29.555683 29.398252 25.758344 29.434568 ... 23.131067 23.052768 23.095286 23.070104 22.952688 22.946525 22.679091 22.677667 22.467302 22.499040
2 25.930738 33.803047 33.604014 32.915213 30.251354 30.873142 29.524005 29.366815 25.734579 29.401911 ... 23.110263 23.031970 23.074543 23.049356 22.931943 22.925829 22.658564 22.657194 22.447123 22.478889
3 25.906920 33.774848 33.576146 32.878354 30.223691 30.841181 29.492311 29.335363 25.710810 29.369246 ... 23.089460 23.011173 23.053802 23.028610 22.911199 22.905135 22.638039 22.636723 22.426947 22.458742
4 25.883110 33.746654 33.548278 32.841488 30.196032 30.809220 29.460617 29.303914 25.687049 29.336588 ... 23.068670 22.990389 23.033073 23.007876 22.890467 22.884452 22.617526 22.616263 22.406783 22.438606
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
313 14.949465 21.859864 21.407965 19.522513 18.613011 18.281919 17.055310 16.928078 14.766674 16.485056 ... 12.671225 12.594520 12.638176 12.607687 12.484442 12.482223 12.211117 12.225296 12.052960 12.080236
314 14.916718 21.845558 21.411155 19.530729 18.592100 18.274660 17.044438 16.916905 14.733685 16.470239 ... 12.631767 12.554985 12.598540 12.567914 12.444282 12.441953 12.169769 12.183968 12.010663 12.037913
315 14.884109 21.831753 21.415111 19.539779 18.571538 18.267978 17.034075 16.906246 14.700830 16.455932 ... 12.592302 12.515440 12.558894 12.528127 12.404098 12.401656 12.128368 12.142587 11.968289 11.995514
316 14.851538 21.818069 21.419250 19.549028 18.551062 18.261435 17.023836 16.895713 14.668011 16.441746 ... 12.552842 12.475900 12.519251 12.488343 12.363915 12.361359 12.086961 12.101201 11.925905 11.953104
317 14.818997 21.804534 21.423317 19.559072 18.530665 18.255557 17.014354 16.885930 14.635219 16.428355 ... 12.513350 12.436329 12.479578 12.448531 12.323709 12.321042 12.045552 12.059809 11.883527 11.910705

318 rows × 57 columns

```python print(type(fitResults)) ``` ```python chi2 = list() Ys = list() alphas = list() for pop in fitResults: chi2.append(pop[0]) Ys.append((pop[1][0][1], pop[1][1][1])) alphas.append((pop[1][0][2], pop[1][1][2])) chi2 = np.array(chi2) Ys = np.array(Ys) alphas = np.array(alphas) ``` ```python YsA = Ys[:, 0] sortedYsA = np.argsort(YsA) plt.plot(YsA[sortedYsA], chi2[sortedYsA]) plt.xlim( ``` [] ![png](media:7bbf01f35c9ab446e1091144b92839d9d3a8d5dc19697cb894ca45a17898c4e4:output_15_1.png) ```python ``` ```python Ys[:, 0] ``` array([0.24, 0.3 , 0.24, ..., 0.33, 0.3 , 0.24]) ```python sortedchi2 ``` array([ 0, 1, 2, ..., 1079, 1080, 1081]) ```python ``` array([0.05120079, 0.06275137, 0.07305412, ..., 0.99586754, 0.99739802, 0.99955145]) ```python ```