====== Visualization of Astrophysical Data and Fitting Results ====== === SextenFigures.ipynb === This file contains Python code for processing and visualizing astrophysical data, including manipulating photometry data, normalizing densities, creating color-magnitude diagrams, and plotting fitting results to identify best fits among model populations. It includes custom color schemes for visualization, use of matplotlib for plotting, and procedures for density normalization and scatter plot generation. The notebook likely serves as part of an analysis pipeline in astrophysical research, particularly focusing on the study of globular clusters or similar stellar systems. ```python import matplotlib.pyplot as plt import numpy as np import pandas as pd import os import pickle as pkl from scipy.spatial.distance import cdist from tqdm import tqdm import numpy as np from pathlib import Path from scipy.interpolate import splrep, BSpline from scipy.signal import savgol_filter from pysep.atm.utils import load_new_style from dataclasses import dataclass from collections import namedtuple import matplotlib from scipy.signal import savgol_filter from mplEasyAnimate import animation ``` ```python @dataclass class colorscheme: DartmouthGreen : str = "#00693E" ForestGreen : str = "#12312B" RichForestGreen : str = "#0D1E1C" White : str = "#FFFFFF" Black : str = "#000000" AutumBrown : str = "#643C20" BonfireRed : str = "#9D162E" SpringGreen : str = "#C4DD88" Violet : str = "#B607DE" pallet = namedtuple("pallet", "C0 C1") primary : namedtuple = pallet(DartmouthGreen, Black) seconday : namedtuple = pallet(ForestGreen,AutumBrown) tertiery : namedtuple = pallet(RichForestGreen,BonfireRed) DGcmap =cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF", colorscheme.DartmouthGreen]) ``` ```python PHOTROOT = "/mnt/Astronomy/GraduateSchool/Thesis/GCConsistency/NGC2808/photometry/HUGS/ngc2808/photometry.pkl" ``` ```python def normalize_density(color, mag, density, n=5000): normDensity = np.zeros(shape=color.shape[0]) for IDx, (c, m, d) in tqdm(enumerate(zip(color, mag, density)), total=len(density)): distances = cdist(np.array([[c, m]]), np.array([color, mag]).T)[0] closestIDX= np.argpartition(distances, n) closestDensity = density[closestIDX[:n]] meanNearDensity = np.mean(closestDensity) normalizedDensity = d/meanNearDensity normDensity[IDx] = normalizedDensity return normDensity def normalize_density_magBin(color, mag, density, binSize=0.1): normDensity = np.zeros(shape=color.shape[0]) for IDx, (c, m, d) in tqdm(enumerate(zip(color, mag, density)), total=len(density)): cut = (mag > m-binSize/2) & (mag <= m+binSize/2) binDensity = density[cut] meanBinDensity = np.mean(binDensity) normalizedDensity = d/meanBinDensity normDensity[IDx] = normalizedDensity return normDensity ``` ```python densityCache = "/mnt/Astronomy/packages/localTests/fidanka/MC_1_Density.npz" assert os.path.exists(densityCache), "Density Cache File not Found!" ``` ```python density = np.load(densityCache)['density'] with open(PHOTROOT, 'rb') as f: HUGSPhotometry = pkl.load(f)[1] color = HUGSPhotometry["F275W"] - HUGSPhotometry["F814W"] mag = HUGSPhotometry["F814W"] HUGSPhotometry['density'] = normalize_density_magBin(color, mag, density, binSize=0.3) ``` 100%|████████████████████████████████████████████████████████| 38319/38319 [00:15<00:00, 2418.10it/s] ```python with plt.style.context(pubStyle): fig, axs = plt.subplots(2,3, figsize=(15, 10)) ax1 = axs[0,0] ax2 = axs[1,0] ax3 = axs[0,1] ax4 = axs[1,1] ax5 = axs[0,2] ax6 = axs[1,2] f1 = "F275W" f2 = "F814W" f3 = f2 color = HUGSPhotometry[f1]-HUGSPhotometry[f2] mag = HUGSPhotometry[f3] density = HUGSPhotometry["density"] condF = (color > 1.75) & (color < 5) & (mag < 22) & (mag > 15) colorF = color[condF] magF = mag[condF] densityF = density[condF] ax1.scatter(colorF, magF, s=1, c=colorscheme.DartmouthGreen) ax1.invert_yaxis() ax2.scatter(colorF, magF, s=1, c=densityF, cmap=DGcmap) ax2.invert_yaxis() condZ = (color > 1.75) & (color < 3.5) & (mag < 20) & (mag > 18.1) colorZ = color[condZ] magZ = mag[condZ] densityZ = density[condZ] ax3.scatter(colorZ, magZ, s=1, c=colorscheme.DartmouthGreen) ax3.set_xticklabels([]) ax3.invert_yaxis() # normDensityZ = normalize_density(colorZ, magZ, densityZ) ax4.scatter(colorZ, magZ, s=1, c=densityZ, alpha=1, cmap=DGcmap) ax4.invert_yaxis() # IDs = ["A", "B", "C", "D", "E", "F"] # Axs = [ax1, ax3, ax5, ax2, ax4, ax6] # for ax, l in zip(Axs, IDs): # ax.text(0.9, 0.5, l, transform=ax.transAxes) plt.subplots_adjust(hspace=0) ax1.set_ylabel(f"{f3}", fontsize=23) ax2.set_ylabel(f"{f3}", fontsize=23) # ax3.set_ylabel(f"{f3}", fontsize=23) # ax4.set_ylabel(f"{f3}", fontsize=23) ax2.set_xlabel(f"{f1}-{f2}") ax4.set_xlabel(f"{f1}-{f2}") ax6.set_xlabel(f"{f1}-{f2}") condRGB = (color > 3) & (color < 5) & (mag < 17.5) & (mag > 15) colorRGB = color[condRGB] magRGB = mag[condRGB] densityRGB = density[condRGB] # normDensity = normalize_density(colorRGB, magRGB, densityRGB, n=10) ax5.scatter(colorRGB, magRGB,s=1, c=colorscheme.DartmouthGreen) ax5.invert_yaxis() ax6.scatter(colorRGB, magRGB,s=1, c=densityRGB, cmap=DGcmap) ax6.invert_yaxis() fig.savefig("Figures/DensityMap.png", dpi=300) ```  ```python with open("ExampleFidOutput.pkl", 'rb') as f: fiducial = pkl.load(f) ``` ```python with plt.style.context(pubStyle): fig, ax = plt.subplots(1,1,figsize=(10,7)) fig.subplots_adjust(hspace=0) ax.scatter(color, mag, s=1, c=HUGSPhotometry['density'], cmap=DGcmap) ax.set_xlim(1.5, 5) ax.set_ylim(15.5, 22) ax.invert_yaxis() ax.set_xlabel("F275W - F814W", fontsize=23) ax.set_ylabel("F814W", fontsize=23) ax.plot(fiducial['Acolor'], fiducial['mag'], linewidth = 5, color=colorscheme.BonfireRed, label="E") ax.plot(fiducial['Bcolor'], fiducial['mag'], linewidth = 5, color=colorscheme.Violet, label="A", linestyle='dashed') ax.legend(fontsize=23, frameon=False) fig.savefig("Figures/NGC2808Fid.png", dpi=300) # fig.savefig("../static/imgs/NGC2808Fid.png", dpi=200) ```  ```python with open("../../../../../../../../Astronomy/GraduateSchool/Thesis/GCConsistency/NGC2808/Analysis/fitting/ReducedResults.denseAlpha.pkl", 'rb') as f: fitResults = pkl.load(f) ``` ```python with plt.style.context(pubStyle): for n in tqdm(range(len(fitResults))): fig, ax = plt.subplots(1,1,figsize=(10,7)) ax.plot(fiducial['Acolor'], fiducial['mag'], linewidth = 5, color=colorscheme.BonfireRed, label="E") ax.plot(fiducial['Bcolor'], fiducial['mag'], linewidth = 5, color=colorscheme.Violet, label="A", linestyle='dashed') ax.set_xlim(1.5, 5) ax.set_ylim(15.5, 22) # print(fitResults[n][0]) ax.set_title(f"n: {n}, chi2: {fitResults[n][0]:0.3f}") A = fitResults[n][2][0] E = fitResults[n][2][1] Acolor = A['F275W'] - A["F814W"] Amag = A["F814W"] Ecolor = E["F275W"] - E["F814W"] Emag = E["F814W"] ax.plot(Acolor, Amag) ax.plot(Ecolor, Emag) ax.invert_yaxis() plt.savefig(f"Figures/bfr-{n}.png") plt.close(fig) ``` ```python nA = 0 nE = 4 with plt.style.context(pubStyle): A = fitResults[nA][2][0] E = fitResults[nE][2][1] print(fitResults[nA][0]) print(fitResults[nE][0]) Acolor = A['WFC3_UVIS_F275W'] - A["WFC3_UVIS_F814W"] Amag = A["WFC3_UVIS_F814W"] Ecolor = E["WFC3_UVIS_F275W"] - E["WFC3_UVIS_F814W"] Emag = E["WFC3_UVIS_F814W"] fig, ax = plt.subplots(1,1,figsize=(10,7)) ASotedIDX = np.argsort(Amag) ax.plot(fiducial['Acolor'], fiducial['mag'], color=colorscheme.BonfireRed, linestyle='dashed', alpha=0.5, label="Fiducial E") ax.plot(savgol_filter(Acolor[ASotedIDX], 10, 2), Amag[ASotedIDX], color=colorscheme.BonfireRed, label="Best Fit E") ax.plot(fiducial['Bcolor'], fiducial['mag'], color=colorscheme.Violet, linestyle='dashed', alpha=0.5, label="Fiducial A") # ax.set_xlim(1.5, 5) # ax.set_ylim(18, 21) ax.plot(Ecolor, Emag, color=colorscheme.Violet, label="Best Fit A") ax.invert_yaxis() ax.legend(frameon=False) # print(fitResults[nA][1][0][3].x) # print(fitResults[nE][1][1][3].x) # print(fitResults[nA][1][0][1]) # print(fitResults[nE][1][1][1]) # print(fitResults[nA][1][0][2]) # print(fitResults[nE][1][1][2]) ax.set_xlabel("F275W - F814W", fontsize=23) ax.set_ylabel("F814W", fontsize=23) fig.savefig("Figures/BestFit.png", dpi=300) ``` 0.07313541839143663 0.132039504646009  ```python A ```
WFC3_UVIS_F200LP | WFC3_UVIS_F218W | WFC3_UVIS_F225W | WFC3_UVIS_F275W | WFC3_UVIS_F280N | WFC3_UVIS_F300X | WFC3_UVIS_F336W | WFC3_UVIS_F343N | WFC3_UVIS_F350LP | WFC3_UVIS_F373N | ... | WFC3_IR_F127M | WFC3_IR_F128N | WFC3_IR_F130N | WFC3_IR_F132N | WFC3_IR_F139M | WFC3_IR_F140W | WFC3_IR_F153M | WFC3_IR_F160W | WFC3_IR_F164N | WFC3_IR_F167N | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 25.978353 | 33.859351 | 33.659541 | 32.988767 | 30.306583 | 30.936987 | 29.587342 | 29.429675 | 25.782097 | 29.467213 | ... | 23.151844 | 23.073539 | 23.116001 | 23.090822 | 22.973418 | 22.967202 | 22.699599 | 22.698120 | 22.487449 | 22.519156 |
1 | 25.954552 | 33.831236 | 33.631871 | 32.952047 | 30.279008 | 30.905088 | 29.555683 | 29.398252 | 25.758344 | 29.434568 | ... | 23.131067 | 23.052768 | 23.095286 | 23.070104 | 22.952688 | 22.946525 | 22.679091 | 22.677667 | 22.467302 | 22.499040 |
2 | 25.930738 | 33.803047 | 33.604014 | 32.915213 | 30.251354 | 30.873142 | 29.524005 | 29.366815 | 25.734579 | 29.401911 | ... | 23.110263 | 23.031970 | 23.074543 | 23.049356 | 22.931943 | 22.925829 | 22.658564 | 22.657194 | 22.447123 | 22.478889 |
3 | 25.906920 | 33.774848 | 33.576146 | 32.878354 | 30.223691 | 30.841181 | 29.492311 | 29.335363 | 25.710810 | 29.369246 | ... | 23.089460 | 23.011173 | 23.053802 | 23.028610 | 22.911199 | 22.905135 | 22.638039 | 22.636723 | 22.426947 | 22.458742 |
4 | 25.883110 | 33.746654 | 33.548278 | 32.841488 | 30.196032 | 30.809220 | 29.460617 | 29.303914 | 25.687049 | 29.336588 | ... | 23.068670 | 22.990389 | 23.033073 | 23.007876 | 22.890467 | 22.884452 | 22.617526 | 22.616263 | 22.406783 | 22.438606 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
313 | 14.949465 | 21.859864 | 21.407965 | 19.522513 | 18.613011 | 18.281919 | 17.055310 | 16.928078 | 14.766674 | 16.485056 | ... | 12.671225 | 12.594520 | 12.638176 | 12.607687 | 12.484442 | 12.482223 | 12.211117 | 12.225296 | 12.052960 | 12.080236 |
314 | 14.916718 | 21.845558 | 21.411155 | 19.530729 | 18.592100 | 18.274660 | 17.044438 | 16.916905 | 14.733685 | 16.470239 | ... | 12.631767 | 12.554985 | 12.598540 | 12.567914 | 12.444282 | 12.441953 | 12.169769 | 12.183968 | 12.010663 | 12.037913 |
315 | 14.884109 | 21.831753 | 21.415111 | 19.539779 | 18.571538 | 18.267978 | 17.034075 | 16.906246 | 14.700830 | 16.455932 | ... | 12.592302 | 12.515440 | 12.558894 | 12.528127 | 12.404098 | 12.401656 | 12.128368 | 12.142587 | 11.968289 | 11.995514 |
316 | 14.851538 | 21.818069 | 21.419250 | 19.549028 | 18.551062 | 18.261435 | 17.023836 | 16.895713 | 14.668011 | 16.441746 | ... | 12.552842 | 12.475900 | 12.519251 | 12.488343 | 12.363915 | 12.361359 | 12.086961 | 12.101201 | 11.925905 | 11.953104 |
317 | 14.818997 | 21.804534 | 21.423317 | 19.559072 | 18.530665 | 18.255557 | 17.014354 | 16.885930 | 14.635219 | 16.428355 | ... | 12.513350 | 12.436329 | 12.479578 | 12.448531 | 12.323709 | 12.321042 | 12.045552 | 12.059809 | 11.883527 | 11.910705 |
318 rows × 57 columns