This Jupyter notebook, titled 'ASCII_Analysis.ipynb', is a comprehensive analysis tool designed for the exploration and statistical study of ASCII data related to dance movements and the associated emotional states. The script includes functionalities for data preprocessing, visualization, and the extraction of meaningful statistics from time-series data. Through various statistical and signal processing techniques such as Lomb-Scargle periodograms and Gaussian fitting, it investigates properties like the center of position evolution, average distance from center, velocity analysis, and frequency domain analysis to discern patterns correlated with different emotions in dance movements. The notebook utilizes libraries such as pandas, matplotlib, numpy, scipy, seaborn, and mplEasyAnimate for its analysis.
import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from tqdm import tqdm import numpy as np from mplEasyAnimate import animation from scipy.signal import lombscargle import os from scipy.optimize import curve_fit import seaborn as sns
def frameToArray(frame): start = 1 vecs = np.zeros(shape=(int((frame.shape[0]-1)/3), 3)) for itr, end in enumerate(range(4, frame.shape[0]+3, 3)): vecs[itr] = np.array(frame[start:end]) start = end return vecs
def CalcCenterOfPos(frame): vecs = frameToArray(frame) return vecs.mean(axis=0)
def CenterOfPosEvolution(df): COPs = np.zeros(shape=(df.shape[0], 3)) times = df['Time'].values for itr, frame in tqdm(df.iterrows(), total=df.shape[0]): COPs[itr] = CalcCenterOfPos(frame) return COPs, times
def getAvgPosFromCenter(frame): COP = CalcCenterOfPos(frame) vecs = frameToArray(frame) return np.abs(vecs-COP).mean(axis=0)
def getAvgDistFromCenter(frame): COP = CalcCenterOfPos(frame) vecs = frameToArray(frame) return np.mean(np.sqrt(np.sum(np.power(np.subtract(COP, vecs), 2), axis=1)))
def evolveAvgPosFromCenter(df): SEPs = np.zeros(shape=(df.shape[0], 3)) times = df['Time'].values for itr, frame in tqdm(df.iterrows(), total=df.shape[0]): SEPs[itr] = getAvgPosFromCenter(frame) return SEPs, times
def evolveAvgDistFromCenter(df): SEPs = np.zeros(shape=(df.shape[0],)) times = df['Time'].values for itr, frame in tqdm(df.iterrows(), total=df.shape[0]): SEPs[itr] = getAvgDistFromCenter(frame) return SEPs, times
def genLSP(t, y, s=None): nyquist = 1/(2*(t[1]-t[0])) res = (t[1]-t[0])/t.shape[0] if not s: s = int(1/res) f = 2*np.pi*np.linspace(res/10, 0.5, s) pgram = lombscargle(t, y, f, normalize=True) return f, pgram
analyzedFiles = os.listdir('AnalyzedData/') analyzedFiles = ["AnalyzedData/{}".format(x) for x in analyzedFiles if x[0] != '.']
emotions = [(x.split('.')[0]).split('_')[-1] for x in analyzedFiles]
data = list() for file in analyzedFiles: analysis = np.load(file) data.append(analysis)
for i, element in enumerate(data): data[i][1] = (data[i][1]-np.mean(data[i][1]))/np.mean(data[i][1])
velocities = list() for dance in data: vel = (np.roll(dance[1], -1) - np.roll(dance[1], 1)) / (np.roll(dance[0], -1) - np.roll(dance[0], 1)) velocities.append(np.vstack([dance[0], vel]))
for dance in velocities: plt.plot(dance[0], abs(dance[1]))
for dance in data: plt.plot(dance[0], dance[1])
fig, ax = plt.subplots(1, 1, figsize=(10, 7)) ax.plot(data[0][0], data[0][1], 'k', linewidth=1) ax.set_xlabel('Time [s]', fontsize=17) ax.set_ylabel('Mean Radial Seperation [m]', fontsize=17) ax.tick_params(axis='both', which='major', labelsize=15) plt.savefig("Figures/MeanRadialSeperation.pdf", bbox_inches='tight')
FTs = np.zeros(shape=(49, 2, 2000))
count = 0 for did, dance in tqdm(enumerate(data), total=len(data)): if did != 9: f, pgram = genLSP(dance[0], dance[1], s=2000) FTs[count, 0] = f FTs[count, 1] = pgram count += 1
for fid, FT in enumerate(FTs): if np.mean(FT[1]) > 0.4: print(fid) plt.plot(FT[0], FT[1])
fig, ax = plt.subplots(1, 1, figsize=(10, 7)) ax.plot(FTs[0][0], FTs[0][1], 'k', linewidth=1) ax.set_xlabel(r'Frequency [s$^{-1}$]', fontsize=17) ax.set_ylabel('Fractional Amplitude', fontsize=17) ax.tick_params(axis='both', which='major', labelsize=15) plt.savefig("Figures/FTExample.pdf", bbox_inches='tight')
len(evalEmotions)
49
stats = np.zeros(shape=(49, 3)) evalEmotions = list() count = 0 for fid, FT in enumerate(FTs): stats[count] = np.array([FT[0][FT[1].argmax()], FT[1][FT[1].argmax()], np.mean(FT[1])]) evalEmotions.append(emotions[count]) count += 1
fig, axs = plt.subplots(3, 1, figsize=(10, 10)) axs[0].plot(stats[:, 0], stats[:, 1], 'o') axs[1].plot(stats[:, 1], stats[:, 2], 'x') axs[2].plot(stats[:, 0], stats[:, 2], 's') for stat, emotion in zip(stats, evalEmotions): axs[2].annotate(emotion, xy=(stat[0], stat[2]))
gaus = lambda x, mu, sigma: 1/np.sqrt(2*np.pi*(sigma**2))*np.exp(-((x-mu)**2)/(2*(sigma**2))) bimodal = lambda x, mu1, sigma1, mu2, sigma2: gaus(x, mu1, sigma1)+gaus(x, mu2, sigma2)
fig = plt.figure(figsize=(10, 7)) bins = plt.hist(stats[:, 0], bins=20) centers = (bins[1][1:]+bins[1][:-1])/2 plt.xlabel('Frequencey of Max Amplitude', fontsize=20)
Text(0.5, 0, 'Frequencey of Max Amplitude')
fit1, covar1 = curve_fit(gaus, centers, bins[0], p0=[0.1, 0.2]) err1 = np.sqrt(np.diag(covar1)) fit2, covar2 = curve_fit(gaus, centers, bins[0], p0=[1, 0.1]) err2 = np.sqrt(np.diag(covar2))
fig = plt.figure(figsize=(10, 7)) x = np.linspace(0, 1.75, 1000) bins = plt.hist(stats[:, 0], bins=20, color='grey', alpha=0.5, ec='black') plt.plot(x, gaus(x, *fit1)+gaus(x, *fit2), color='black', linestyle='dashed') plt.xlabel('Frequencey of Max Amplitude', fontsize=20) plt.annotate(r'$\mu_{{1}}={:0.2f}\pm{:0.2f}$ Hz'.format(fit1[0], err1[0]), xy=(0.5, 6), fontsize=15) plt.annotate(r'$\sigma_{{1}}={:0.2f}\pm{:0.2f}$ Hz'.format(fit1[1], err1[1]), xy=(0.5, 5.5), fontsize=15) plt.annotate(r'$\mu_{{2}}={:0.2f}\pm{:0.2f}$ Hz'.format(fit2[0], err2[0]), xy=(1, 6), fontsize=15) plt.annotate(r'$\sigma_{{2}}={:0.2f}\pm{:0.2f}$ Hz'.format(fit2[1], err2[1]), xy=(1, 5.5), fontsize=15) plt.savefig('Figures/FrequencyDist.pdf', bbox_inches='tight')
nonStatGaus = lambda x, mu, sigma, A: A*np.exp(-((x-mu)**2)/(2*(sigma**2)))
meanVels = [np.std(x[1]) for x in velocities]
x = np.linspace(2, 8, 1000) bins = plt.hist(meanVels, bins=7) centers = (bins[1][1:]+bins[1][:-1])/2 fit, covar = curve_fit(nonStatGaus, centers, bins[0], p0=[4.5, 6, 7]) plt.plot(x, nonStatGaus(x, *fit)) plt.show()
timeSeriseStats = np.zeros(shape=(49, 4)) count = 0 for did, dance in enumerate(velocities): if did != 9: timeSeriseStats[count, 0] = np.mean(dance[1]) timeSeriseStats[count, 1] = np.median(dance[1]) timeSeriseStats[count, 2] = np.max(dance[1]) timeSeriseStats[count, 3] = np.std(dance[1]) count += 1
df = pd.DataFrame(data=timeSeriseStats, columns=['Mean', 'Median', 'Max', 'Sigma']) df['Emotion'] = pd.Series(evalEmotions, index=df.index)
<div> <style scoped>
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; }
.dataframe thead th { text-align: right; }
</style> <table border=“1” class=“dataframe”
>
<thead> <tr style="text-align: right;"> <th></th> <th>Mean</th> <th>Median</th> <th>Max</th> <th>Sigma</th> <th>Emotion</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>-0.001798</td> <td>-0.004902</td> <td>56.168820</td> <td>2.978317</td> <td>Miserable</td> </tr> <tr> <th>1</th> <td>-0.001649</td> <td>0.002063</td> <td>62.108348</td> <td>5.054398</td> <td>Mix</td> </tr> <tr> <th>2</th> <td>-0.004032</td> <td>0.006175</td> <td>44.446849</td> <td>5.329097</td> <td>Angry</td> </tr> <tr> <th>3</th> <td>-0.002111</td> <td>0.007060</td> <td>42.284433</td> <td>3.910049</td> <td>Tired</td> </tr> <tr> <th>4</th> <td>-0.000834</td> <td>0.002970</td> <td>46.395794</td> <td>4.436914</td> <td>Pleased</td> </tr> <tr> <th>5</th> <td>-0.001896</td> <td>-0.001654</td> <td>48.362561</td> <td>4.013522</td> <td>Sad</td> </tr> <tr> <th>6</th> <td>-0.002551</td> <td>0.000869</td> <td>59.083402</td> <td>3.036652</td> <td>Relaxed</td> </tr> <tr> <th>7</th> <td>-0.002301</td> <td>-0.002254</td> <td>48.161705</td> <td>5.110528</td> <td>Pleased</td> </tr> <tr> <th>8</th> <td>-0.002890</td> <td>-0.000064</td> <td>52.981581</td> <td>4.607283</td> <td>Afraid</td> </tr> <tr> <th>9</th> <td>0.000044</td> <td>0.002082</td> <td>48.025167</td> <td>3.730987</td> <td>Mix</td> </tr> <tr> <th>10</th> <td>-0.000073</td> <td>-0.000042</td> <td>55.873222</td> <td>4.402845</td> <td>Afraid</td> </tr> <tr> <th>11</th> <td>-0.000254</td> <td>-0.001653</td> <td>62.410698</td> <td>6.520325</td> <td>Sad</td> </tr> <tr> <th>12</th> <td>-0.001560</td> <td>0.000646</td> <td>41.603721</td> <td>4.267015</td> <td>Angry</td> </tr> <tr> <th>13</th> <td>-0.001363</td> <td>-0.000718</td> <td>32.500379</td> <td>3.303371</td> <td>Angry</td> </tr> <tr> <th>14</th> <td>-0.002550</td> <td>-0.001232</td> <td>53.745451</td> <td>4.533554</td> <td>Satisfied</td> </tr> <tr> <th>15</th> <td>-0.001855</td> <td>0.001056</td> <td>53.571594</td> <td>4.125465</td> <td>Tired</td> </tr> <tr> <th>16</th> <td>-0.002170</td> <td>-0.001059</td> <td>56.175345</td> <td>3.739604</td> <td>Annoyed</td> </tr> <tr> <th>17</th> <td>-0.000951</td> <td>0.001410</td> <td>43.203369</td> <td>4.116629</td> <td>Bored</td> </tr> <tr> <th>18</th> <td>0.000185</td> <td>0.000682</td> <td>53.907577</td> <td>4.237050</td> <td>Pleased</td> </tr> <tr> <th>19</th> <td>-0.000184</td> <td>-0.000246</td> <td>52.905508</td> <td>4.148395</td> <td>Excited</td> </tr> <tr> <th>20</th> <td>-0.001560</td> <td>-0.001905</td> <td>55.523178</td> <td>4.340211</td> <td>Happy</td> </tr> <tr> <th>21</th> <td>-0.001759</td> <td>0.000900</td> <td>45.436848</td> <td>4.257791</td> <td>Angry</td> </tr> <tr> <th>22</th> <td>-0.000372</td> <td>0.002558</td> <td>57.722183</td> <td>4.424116</td> <td>Miserable</td> </tr> <tr> <th>23</th> <td>0.000884</td> <td>0.004534</td> <td>31.542905</td> <td>3.119212</td> <td>Miserable</td> </tr> <tr> <th>24</th> <td>-0.002209</td> <td>-0.000254</td> <td>62.365436</td> <td>6.278034</td> <td>Relaxed</td> </tr> <tr> <th>25</th> <td>-0.003495</td> <td>0.002474</td> <td>62.691057</td> <td>6.775984</td> <td>Annoyed</td> </tr> <tr> <th>26</th> <td>-0.000142</td> <td>-0.009252</td> <td>52.386723</td> <td>6.254499</td> <td>Afraid</td> </tr> <tr> <th>27</th> <td>-0.000601</td> <td>-0.002673</td> <td>45.750873</td> <td>5.537992</td> <td>Excited</td> </tr> <tr> <th>28</th> <td>-0.002934</td> <td>0.005929</td> <td>35.486262</td> <td>4.347244</td> <td>Excited</td> </tr> <tr> <th>29</th> <td>-0.002131</td> <td>0.002095</td> <td>49.055195</td> <td>5.256263</td> <td>Happy</td> </tr> <tr> <th>30</th> <td>0.004173</td> <td>-0.001804</td> <td>51.143077</td> <td>5.439556</td> <td>Bored</td> </tr> <tr> <th>31</th> <td>-0.000224</td> <td>-0.006051</td> <td>40.074855</td> <td>3.727305</td> <td>Happy</td> </tr> <tr> <th>32</th> <td>-0.002232</td> <td>0.004002</td> <td>47.220204</td> <td>5.129865</td> <td>Afraid</td> </tr> <tr> <th>33</th> <td>-0.003202</td> <td>0.001654</td> <td>27.594398</td> <td>3.238834</td> <td>Annoyed</td> </tr> <tr> <th>34</th> <td>-0.002317</td> <td>0.000272</td> <td>63.977990</td> <td>4.435240</td> <td>Bored</td> </tr> <tr> <th>35</th> <td>-0.002719</td> <td>0.004786</td> <td>43.860434</td> <td>4.161989</td> <td>Annoyed</td> </tr> <tr> <th>36</th> <td>-0.000957</td> <td>0.000309</td> <td>41.176874</td> <td>2.883719</td> <td>Sad</td> </tr> <tr> <th>37</th> <td>-0.001290</td> <td>-0.000089</td> <td>55.583615</td> <td>5.272462</td> <td>Tired</td> </tr> <tr> <th>38</th> <td>-0.000217</td> <td>-0.004358</td> <td>49.607502</td> <td>6.279034</td> <td>Relaxed</td> </tr> <tr> <th>39</th> <td>-0.000071</td> <td>-0.002206</td> <td>38.600903</td> <td>5.021533</td> <td>Satisfied</td> </tr> <tr> <th>40</th> <td>-0.001090</td> <td>-0.001596</td> <td>68.660583</td> <td>4.984018</td> <td>Satisfied</td> </tr> <tr> <th>41</th> <td>-0.000999</td> <td>0.000668</td> <td>77.463016</td> <td>5.703841</td> <td>Mix</td> </tr> <tr> <th>42</th> <td>-0.001357</td> <td>0.000859</td> <td>54.578165</td> <td>4.464673</td> <td>Happy</td> </tr> <tr> <th>43</th> <td>0.003839</td> <td>0.004214</td> <td>42.680804</td> <td>4.096789</td> <td>Excited</td> </tr> <tr> <th>44</th> <td>-0.002007</td> <td>-0.000875</td> <td>55.284132</td> <td>4.743275</td> <td>Sad</td> </tr> <tr> <th>45</th> <td>0.004543</td> <td>0.002699</td> <td>44.558832</td> <td>4.904963</td> <td>Bored</td> </tr> <tr> <th>46</th> <td>0.000246</td> <td>0.000620</td> <td>34.547461</td> <td>3.294687</td> <td>Relaxed</td> </tr> <tr> <th>47</th> <td>-0.000669</td> <td>0.007457</td> <td>47.166044</td> <td>5.101586</td> <td>Pleased</td> </tr> <tr> <th>48</th> <td>-0.000959</td> <td>-0.000093</td> <td>48.413527</td> <td>4.118721</td> <td>Mix</td> </tr> </tbody>
</table>
<
/div>
with sns.axes_style("ticks"): sns.pairplot(df, hue='Emotion') plt.savefig('Figures/PairPlot.pdf', bbox_inches='tight')
/home/tboudreaux/anaconda3/envs/general/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result. return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
FTs_V = np.zeros(shape=(49, 2, 2000))
count = 0 for did, dance in tqdm(enumerate(velocities), total=len(velocities)): if did != 9: f, pgram = genLSP(dance[0], dance[1], s=2000) FTs_V[count, 0] = f FTs_V[count, 1] = pgram count += 1
for fid, FT in enumerate(FTs_V): plt.plot(FT[0], FT[1])
stats_V = np.zeros(shape=(49, 3)) count = 0 for fid, FT in enumerate(FTs_V): stats_V[count] = np.array([FT[0][FT[1].argmax()], FT[1][FT[1].argmax()], np.mean(FT[1])]) count += 1
fig, axs = plt.subplots(3, 1, figsize=(10, 10)) axs[0].plot(stats_V[:, 0], stats_V[:, 1], 'o') axs[1].plot(stats_V[:, 1], stats_V[:, 2], 'x') axs[2].plot(stats_V[:, 0], stats_V[:, 2], 's')
[<matplotlib.lines.Line2D at 0x7fed82866c88>]
df = pd.DataFrame(data=stats_V, columns=['Max Frequency', 'Max Amplitude', 'Standard Deviation']) df['Emotion'] = pd.Series(evalEmotions, index=df.index)
sns.pairplot(df, hue="Emotion")
/home/tboudreaux/anaconda3/envs/general/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result. return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval <seaborn.axisgrid.PairGrid at 0x7fed80383ba8>
python