These scripts are designed for loading, parsing, and processing astrophysical data from .trk and .iso files commonly used in stellar evolution and modeling software. They include functionality for reading specific file structures, extracting metadata, and organizing the data into Python's pandas DataFrames for further analysis. Additionally, the script supports command-line arguments for specifying file paths and output options, making it a handy tool for researchers working with large datasets in astrophysics.
import re import pandas as pd import numpy as np import os import itertools import argparse import pickle def load_iso(path): header = ["Age", "Log_T", "Log_g", "Log_L", "Log_R", "Y_core", "Z_core", "(Z/X)_surf", "L_H", "L_He", "M_He_core", "M_CO_core"] iso = pd.read_csv(path, delim_whitespace=True, names=header, comment='#') with open(path, 'r') as f: metadata_str = f.readline() metadata_str = metadata_str.strip('#').lstrip().rstrip().split(' ')[:3] metadata = dict() for i, data_elem in enumerate(metadata_str): keyvalue = data_elem.split('=') metadata[keyvalue[0]] = float(keyvalue[1]) return iso, metadata def get_trk_metadata(line): mass_search = re.compile('(?<=Total mass = ).*?(?=\s)') mixing_length_search = re.compile('(?<=Mixing length = ).*?(?=\s)') EOS_search = re.compile('(?<=EOS = ).*?(?=\s)') Atm_search = re.compile('(?<=Atm = ).*?(?=\s)') Low_T_opacities_search = re.compile('(?<=Low T opacities = ).*?(?=\s)') mass = mass_search.search(line) mixing_length = mixing_length_search.search(line) EOS = EOS_search.search(line) Atm = Atm_search.search(line) Low_T_opacities = Low_T_opacities_search.search(line) meta = {'Mass':float(mass.group()), 'Mixing Length': float(mixing_length.group()), 'EOS': EOS.group(), 'Atm':Atm.group(), 'Low T Opacities': Low_T_opacities.group()} return meta def load_trk(path): header = [ "Model_#", "shells", "AGE", "log_L", "log_R", "log_g", "log_Teff", "Mconv_core", "Mconv_env", "Rconv_env", "M_He_core", "Xenv", "Zenv", "L_ppI", "L_ppII", "L_ppIII", "L_CNO", "L_triple-alpha", "L_He-C", "L_gravity", "L_neutrinos_old", "L_%_Grav_eng", "L_Itot", "C_log_T", "C_log_RHO", "C_log_P", "C_BETA", "C_ETA", "C_X", "C_Z", "C_H" "C_shell_midpoint", "C_H_shell_mass", "C_T_at_base_of_cz", "C_rho_at_base_of_cz","CA_He3", "CA_C12", "CA_C13", "CA_N14", "CA_N15", "CA_O16", "CA_O17", "CA_O18", "SA_He3", "SA_C12", "SA_C13", "SA_N14", "SA_N15", "SA_O16", "SA_O17","SA_O18", "N_pp", "N_pep", "N_hep", "N_Be7", "N_B8", "N_N13", "N_O15", "N_F17", "Cl37_flux", "Ga71_flux"] trk = pd.DataFrame(columns=header) with open(path, 'r') as trk_file: all_lines = trk_file.readlines() metadata = get_trk_metadata(all_lines[4]) lines = [x.lstrip().rstrip().split() for x in all_lines[14:]] merged_lines = [x+y+z+w+q for x, y, z, w, q in zip(lines[::6], lines[1::6], lines[2::6], lines[3::6], lines[4::6], lines[5::6])] numeric_lines = [[float(y) for y in x] for x in merged_lines] for index, row in enumerate(numeric_lines): trk.loc[index] = row return trk, metadata def load_trk_models(path): trks = list() metas = list() for file in os.listdir(path): if file.endswith('.trk'): print(file) trk, meta = load_trk(os.path.join(path, file)) trks.append(trk) metas.append(meta) trks, metas = sort_based_on_key(trks, metas, key='Mass') return trks, metas def load_iso_models(path): isos = list() metas = list() for file in os.listdir(path): if file.endswith('.iso'): iso, metadata = load_iso(os.path.join(path, file)) isos.append(iso) metas.append(metadata) isos, metas = sort_based_on_key(isos, metas, key='M') return isos, metas def load(path): functions = {'track': load_trk, 'iso': load_iso} suffix = args.path.split('.')[-1] data, metadata = functions[suffix](args.path) return data, metadata if __name__ == "__main__": parser = argparse.ArgumentParser(description="Load data from a dsep3 trk or iso file") parser.add_argument("path", help="path to file", type=str) parser.add_argument("-o", "--output", help="path to save as pickle", type=str) args = parser.parse_args() data, metadata = load(args.path) if args.output: data_package = {"data": data, "metadata": metadata} pickle.dump(data_package, open(args.output, "wb")) else: print("========= METADATA ===========") for key in metadata: print(f"{key}: {metadata[key]}") print("=========== DATA =============") for index, row in data.iterrows(): print(row)