This content illustrates how Python can be used in conjunction with C libraries to perform complex scientific computations. It shows the process of defining a C structure in Python using the ctypes library, initializing it with specific parameters, and then passing it to a C library function for computation. The example also demonstrates handling of C arrays and structures from Python, emphasizing interoperability between Python and C for efficient scientific computing.
import ctypes import numpy as np from numpy.ctypeslib import ndpointer import write class model_results(ctypes.Structure): _fields_=[ ('time', ctypes.c_double), ('csecyr', ctypes.c_double), ('modnum', ctypes.c_double), ('nshell', ctypes.c_double), ('sumass', ctypes.c_double), ('teffl', ctypes.c_double), ('suluml', ctypes.c_double), ('hstot', ctypes.c_double), ('ddage', ctypes.c_double), ('stllast', ctypes.c_double), ('x', ctypes.c_double), ('cmixl', ctypes.c_double), ('trit', ctypes.c_double), ('tril', ctypes.c_double), ('ps', ctypes.c_double), ('ts', ctypes.c_double), ('rs', ctypes.c_double), ('z', ctypes.c_double), ('smllast', ctypes.c_double), ('srllast', ctypes.c_double), ('sllast', ctypes.c_double), ('spllast', ctypes.c_double), ('sdllast', ctypes.c_double), ('cgsl', ctypes.c_double), ('teffl1', ctypes.c_double), ('pn', ctypes.c_double), ('tlumx', ctypes.c_double * 7), ('cfenv', ctypes.c_double * 3), ('elem', ctypes.c_double * 8), ('extelem', ctypes.c_double * 4), ('sml', ctypes.c_double * 1000), ('srl', ctypes.c_double * 1000), ('sl', ctypes.c_double * 1000), ('spl', ctypes.c_double * 1000), ('stl', ctypes.c_double * 1000), ('sdl', ctypes.c_double * 1000), ('lexcom', ctypes.c_bool), ('lrot', ctypes.c_bool), ('lexcp', ctypes.c_bool), ('ldpree', ctypes.c_bool), ('ldiaz', ctypes.c_bool), ('lc', ctypes.c_bool), ('jcore', ctypes.c_int), ('jenv', ctypes.c_int), ('mlast', ctypes.c_int), ('mlast1', ctypes.c_int) ] # defaultArgs = { # 'sumass': ctypes.c_double(1.0), # 'teffl1': ctypes.c_double(3.6), # 'suluml': ctypes.c_double(1.2), # 'x': ctypes.c_double(0.7), # 'z': ctypes.c_double(0.02), # 'pn': ctypes.c_double(1.5), # 'cmixla': ctypes.c_double(1.26), # 'ddage': ctypes.c_double(1.00e3), # 'fmass1': ctypes.c_double(0.00099), # 'fmass2': ctypes.c_double(1.00000), 'beta': ctypes.c_double(1.00000), # 'elem':(ctypes.c_double * 8)(*[2.95e-5, 1.73285e-1, 1.8e-3, 5.3152e-2, # 0.0e0,4.82273e-1,0.0e0,0.0e0]), # 'lexcom': ctypes.c_bool(False) # } defaultArgs = { 'sumass': ctypes.c_double(1.0), 'teffl1': ctypes.c_double(3.60206), 'suluml': ctypes.c_double(1.5), 'x': ctypes.c_double(0.71), 'z': ctypes.c_double(0.02), 'pn': ctypes.c_double(1.5), 'cmixla': ctypes.c_double(1.9126), 'ddage': ctypes.c_double(1.00e4), 'fmass1': ctypes.c_double(9.9e-6), 'fmass2': ctypes.c_double(0.9999), 'beta': ctypes.c_double(1.00000), 'elem':(ctypes.c_double * 8)(*[3e-5, 0.0024651398, 2.48862e-05, 0.00071278576, 0.0, 0.00617626274, 0.0e0, 0.0e0]), 'lexcom': ctypes.c_bool(True) } def run(path, da): libnewpoly = ctypes.CDLL(path) libnewpoly.run.restype = ctypes.c_void_p test1 = model_results.from_address(libnewpoly.run( da['sumass'], da['teffl1'], da['suluml'], da['x'], da['z'], da['pn'], da['cmixla'], da['ddage'], da['fmass1'], da['fmass2'], da['beta'], da['elem'], da['lexcom']) ) write.writeout( "test.out", test1.time, test1.csecyr, test1.modnum, test1.nshell, test1.sumass, test1.teffl, test1.suluml, test1.hstot, test1.ddage, test1.lexcom, test1.lrot, test1.lexcp, test1.ldpree, test1.ldiaz, test1.jcore, test1.jenv, test1.cmixl, np.array(test1.tlumx), test1.trit, test1.tril, test1.ps, test1.ts, test1.rs, np.array(test1.cfenv), test1.x, test1.z, np.array(test1.sml), np.array(test1.srl), np.array(test1.sl), np.array(test1.spl), np.array(test1.stl), np.array(test1.sdl), test1.mlast, test1.mlast1, test1.smllast, test1.srllast, test1.sllast, test1.spllast, test1.stllast, test1.sdllast, test1.lc, np.array(test1.elem), np.array(test1.extelem), test1.cgsl, test1.teffl1, test1.pn ) return test1 if __name__ == "__main__": test1 = run('libnewpoly.so', defaultArgs) print(np.array(test1.sdl)) # print(test1.ckelvin) # print(test1.mlast) # print(test1.mlast1) # print(test1.sml[0:1000]) # # libnewpoly.free_model_results(ctypes.byref(test1)) # del(test1)