This Python script generates pre-main sequence (pre-MS) models for a range of masses given a chemical composition file. The user specifies the path to the composition file, a low and high mass range, and a step size between masses. Additionally, options to specify the output directory and a name for the composition are available. The script uses the PySEP library functions to open and parse the composition file, then generate and output the pre-MS models.
from pysep.opac.tops import open_and_parse from pysep.newpoly.popFileToPolyModel import generate_prems_models from numpy import arange import argparse if __name__ == "__main__": parser = argparse.ArgumentParser(description="Generate pre mainsequence models given a chemical composition file for a range of masses") parser.add_argument("path", help="path to chemical composition file", type=str) parser.add_argument("mlow", help="low mass range of pre main sequence models to generate", type=float) parser.add_argument("mhigh", help="high mass range of pre main sequence models to generate", type=float) parser.add_argument("mstep", help="step size betweem pre main sequence masse", type=float) parser.add_argument("-o", "--output", help="directory to output pre main sequence models too", type=str, default=".") parser.add_argument("-c", "--compName", help="Composition name to use in the premain sequence model", type=str, default="comp") args = parser.parse_args() masses = arange(args.mlow, args.mhigh, args.mstep) parsed = open_and_parse(args.path) generate_prems_models(parsed, masses, args.output, compName=args.compName)