**This is an old revision of the document!**

ASCII_Analysis.ipynb

This Jupyter notebook, titled 'ASCIIAnalysis.ipynb', is a comprehensive analysis tool designed for the exploration and statistical study of ASCII data related to dance movements and the associated emotional states. The script includes functionalities for data preprocessing, visualization, and the extraction of meaningful statistics from time-series data. Through various statistical and signal processing techniques such as Lomb-Scargle periodograms and Gaussian fitting, it investigates properties like the center of position evolution, average distance from center, velocity analysis, and frequency domain analysis to discern patterns correlated with different emotions in dance movements. The notebook utilizes libraries such as pandas, matplotlib, numpy, scipy, seaborn, and mplEasyAnimate for its analysis. python import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from tqdm import tqdm import numpy as np from mplEasyAnimate import animation from scipy.signal import lombscargle import os from scipy.optimize import curve_fit import seaborn as sns python def frameToArray(frame): start = 1 vecs = np.zeros(shape=(int((frame.shape[0]-1)/3), 3)) for itr, end in enumerate(range(4, frame.shape[0]+3, 3)): vecs[itr] = np.array(frame[start:end]) start = end return vecs python def CalcCenterOfPos(frame): vecs = frameToArray(frame) return vecs.mean(axis=0) python def CenterOfPosEvolution(df): COPs = np.zeros(shape=(df.shape[0], 3)) times = df['Time'].values for itr, frame in tqdm(df.iterrows(), total=df.shape[0]): COPs[itr] = CalcCenterOfPos(frame) return COPs, times python def getAvgPosFromCenter(frame): COP = CalcCenterOfPos(frame) vecs = frameToArray(frame) return np.abs(vecs-COP).mean(axis=0) python def getAvgDistFromCenter(frame): COP = CalcCenterOfPos(frame) vecs = frameToArray(frame) return np.mean(np.sqrt(np.sum(np.power(np.subtract(COP, vecs), 2), axis=1))) python def evolveAvgPosFromCenter(df): SEPs = np.zeros(shape=(df.shape[0], 3)) times = df['Time'].values for itr, frame in tqdm(df.iterrows(), total=df.shape[0]): SEPs[itr] = getAvgPosFromCenter(frame) return SEPs, times python def evolveAvgDistFromCenter(df): SEPs = np.zeros(shape=(df.shape[0],)) times = df['Time'].values for itr, frame in tqdm(df.iterrows(), total=df.shape[0]): SEPs[itr] = getAvgDistFromCenter(frame) return SEPs, times python def genLSP(t, y, s=None): nyquist = 1/(2*(t[1]-t[0])) res = (t[1]-t[0])/t.shape[0] if not s: s = int(1/res) f = 2*np.pi*np.linspace(res/10, 0.5, s) pgram = lombscargle(t, y, f, normalize=True) return f, pgram python analyzedFiles = os.listdir('AnalyzedData/') analyzedFiles = ["AnalyzedData/{}".format(x) for x in analyzedFiles if x[0] != '.'] python emotions = [(x.split('.')[0]).split('_')[-1] for x in analyzedFiles] python data = list() for file in analyzedFiles: analysis = np.load(file) data.append(analysis) python for i, element in enumerate(data): data[i][1] = (data[i][1]-np.mean(data[i][1]))/np.mean(data[i][1]) python velocities = list() for dance in data: vel = (np.roll(dance[1], -1) - np.roll(dance[1], 1)) / (np.roll(dance[0], -1) - np.roll(dance[0], 1)) velocities.append(np.vstack([dance[0], vel])) python for dance in velocities: plt.plot(dance[0], abs(dance[1]))
png


python for dance in data: plt.plot(dance[0], dance[1])
png


python fig, ax = plt.subplots(1, 1, figsize=(10, 7)) ax.plot(data[0][0], data[0][1], 'k', linewidth=1) ax.set_xlabel('Time [s]', fontsize=17) ax.set_ylabel('Mean Radial Seperation [m]', fontsize=17) ax.tick_params(axis='both', which='major', labelsize=15) plt.savefig("Figures/MeanRadialSeperation.pdf", bbox_inches='tight')
png


# Frequency Position Analysis python FTs = np.zeros(shape=(49, 2, 2000)) python count = 0 for did, dance in tqdm(enumerate(data), total=len(data)): if did != 9: f, pgram = genLSP(dance[0], dance[1], s=2000) FTs[count, 0] = f FTs[count, 1] = pgram count += 1 python for fid, FT in enumerate(FTs): if np.mean(FT[1]) > 0.4: print(fid) plt.plot(FT[0], FT[1])
png


python fig, ax = plt.subplots(1, 1, figsize=(10, 7)) ax.plot(FTs[0][0], FTs[0][1], 'k', linewidth=1) ax.set_xlabel(r'Frequency [s$^{-1}$]', fontsize=17) ax.set_ylabel('Fractional Amplitude', fontsize=17) ax.tick_params(axis='both', which='major', labelsize=15) plt.savefig("Figures/FTExample.pdf", bbox_inches='tight')
png


python len(evalEmotions) 49 python stats = np.zeros(shape=(49, 3)) evalEmotions = list() count = 0 for fid, FT in enumerate(FTs): stats[count] = np.array([FT[0][FT[1].argmax()], FT[1][FT[1].argmax()], np.mean(FT[1])]) evalEmotions.append(emotions[count]) count += 1 python fig, axs = plt.subplots(3, 1, figsize=(10, 10)) axs[0].plot(stats[:, 0], stats[:, 1], 'o') axs[1].plot(stats[:, 1], stats[:, 2], 'x') axs[2].plot(stats[:, 0], stats[:, 2], 's') for stat, emotion in zip(stats, evalEmotions): axs[2].annotate(emotion, xy=(stat[0], stat[2]))
png


python gaus = lambda x, mu, sigma: 1/np.sqrt(2*np.pi*(sigma**2))*np.exp(-((x-mu)**2)/(2*(sigma**2))) bimodal = lambda x, mu1, sigma1, mu2, sigma2: gaus(x, mu1, sigma1)+gaus(x, mu2, sigma2) python fig = plt.figure(figsize=(10, 7)) bins = plt.hist(stats[:, 0], bins=20) centers = (bins[1][1:]+bins[1][:-1])/2 plt.xlabel('Frequencey of Max Amplitude', fontsize=20) Text(0.5, 0, 'Frequencey of Max Amplitude')
png


python fit1, covar1 = curve_fit(gaus, centers, bins[0], p0=[0.1, 0.2]) err1 = np.sqrt(np.diag(covar1)) fit2, covar2 = curve_fit(gaus, centers, bins[0], p0=[1, 0.1]) err2 = np.sqrt(np.diag(covar2)) python fig = plt.figure(figsize=(10, 7)) x = np.linspace(0, 1.75, 1000) bins = plt.hist(stats[:, 0], bins=20, color='grey', alpha=0.5, ec='black') plt.plot(x, gaus(x, *fit1)+gaus(x, *fit2), color='black', linestyle='dashed') plt.xlabel('Frequencey of Max Amplitude', fontsize=20) plt.annotate(r'$\mu_{{1}}={:0.2f}\pm{:0.2f}$ Hz'.format(fit1[0], err1[0]), xy=(0.5, 6), fontsize=15) plt.annotate(r'$\sigma_{{1}}={:0.2f}\pm{:0.2f}$ Hz'.format(fit1[1], err1[1]), xy=(0.5, 5.5), fontsize=15) plt.annotate(r'$\mu_{{2}}={:0.2f}\pm{:0.2f}$ Hz'.format(fit2[0], err2[0]), xy=(1, 6), fontsize=15) plt.annotate(r'$\sigma_{{2}}={:0.2f}\pm{:0.2f}$ Hz'.format(fit2[1], err2[1]), xy=(1, 5.5), fontsize=15) plt.savefig('Figures/FrequencyDist.pdf', bbox_inches='tight')
png


# Velocity Analysis python nonStatGaus = lambda x, mu, sigma, A: A*np.exp(-((x-mu)**2)/(2*(sigma**2))) python meanVels = [np.std(x[1]) for x in velocities] python x = np.linspace(2, 8, 1000) bins = plt.hist(meanVels, bins=7) centers = (bins[1][1:]+bins[1][:-1])/2 fit, covar = curve_fit(nonStatGaus, centers, bins[0], p0=[4.5, 6, 7]) plt.plot(x, nonStatGaus(x, *fit)) plt.show()
png


python timeSeriseStats = np.zeros(shape=(49, 4)) count = 0 for did, dance in enumerate(velocities): if did != 9: timeSeriseStats[count, 0] = np.mean(dance[1]) timeSeriseStats[count, 1] = np.median(dance[1]) timeSeriseStats[count, 2] = np.max(dance[1]) timeSeriseStats[count, 3] = np.std(dance[1]) count += 1 python df = pd.DataFrame(data=timeSeriseStats, columns=['Mean', 'Median', 'Max', 'Sigma']) df['Emotion'] = pd.Series(evalEmotions, index=df.index) python df <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border=“1” class=“dataframe”> <thead> <tr style=“text-align: right;”> <th></th> <th>Mean</th> <th>Median</th> <th>Max</th> <th>Sigma</th> <th>Emotion</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>-0.001798</td> <td>-0.004902</td> <td>56.168820</td> <td>2.978317</td> <td>Miserable</td> </tr> <tr> <th>1</th> <td>-0.001649</td> <td>0.002063</td> <td>62.108348</td> <td>5.054398</td> <td>Mix</td> </tr> <tr> <th>2</th> <td>-0.004032</td> <td>0.006175</td> <td>44.446849</td> <td>5.329097</td> <td>Angry</td> </tr> <tr> <th>3</th> <td>-0.002111</td> <td>0.007060</td> <td>42.284433</td> <td>3.910049</td> <td>Tired</td> </tr> <tr> <th>4</th> <td>-0.000834</td> <td>0.002970</td> <td>46.395794</td> <td>4.436914</td> <td>Pleased</td> </tr> <tr> <th>5</th> <td>-0.001896</td> <td>-0.001654</td> <td>48.362561</td> <td>4.013522</td> <td>Sad</td> </tr> <tr> <th>6</th> <td>-0.002551</td> <td>0.000869</td> <td>59.083402</td> <td>3.036652</td> <td>Relaxed</td> </tr> <tr> <th>7</th> <td>-0.002301</td> <td>-0.002254</td> <td>48.161705</td> <td>5.110528</td> <td>Pleased</td> </tr> <tr> <th>8</th> <td>-0.002890</td> <td>-0.000064</td> <td>52.981581</td> <td>4.607283</td> <td>Afraid</td> </tr> <tr> <th>9</th> <td>0.000044</td> <td>0.002082</td> <td>48.025167</td> <td>3.730987</td> <td>Mix</td> </tr> <tr> <th>10</th> <td>-0.000073</td> <td>-0.000042</td> <td>55.873222</td> <td>4.402845</td> <td>Afraid</td> </tr> <tr> <th>11</th> <td>-0.000254</td> <td>-0.001653</td> <td>62.410698</td> <td>6.520325</td> <td>Sad</td> </tr> <tr> <th>12</th> <td>-0.001560</td> <td>0.000646</td> <td>41.603721</td> <td>4.267015</td> <td>Angry</td> </tr> <tr> <th>13</th> <td>-0.001363</td> <td>-0.000718</td> <td>32.500379</td> <td>3.303371</td> <td>Angry</td> </tr> <tr> <th>14</th> <td>-0.002550</td> <td>-0.001232</td> <td>53.745451</td> <td>4.533554</td> <td>Satisfied</td> </tr> <tr> <th>15</th> <td>-0.001855</td> <td>0.001056</td> <td>53.571594</td> <td>4.125465</td> <td>Tired</td> </tr> <tr> <th>16</th> <td>-0.002170</td> <td>-0.001059</td> <td>56.175345</td> <td>3.739604</td> <td>Annoyed</td> </tr> <tr> <th>17</th> <td>-0.000951</td> <td>0.001410</td> <td>43.203369</td> <td>4.116629</td> <td>Bored</td> </tr> <tr> <th>18</th> <td>0.000185</td> <td>0.000682</td> <td>53.907577</td> <td>4.237050</td> <td>Pleased</td> </tr> <tr> <th>19</th> <td>-0.000184</td> <td>-0.000246</td> <td>52.905508</td> <td>4.148395</td> <td>Excited</td> </tr> <tr> <th>20</th> <td>-0.001560</td> <td>-0.001905</td> <td>55.523178</td> <td>4.340211</td> <td>Happy</td> </tr> <tr> <th>21</th> <td>-0.001759</td> <td>0.000900</td> <td>45.436848</td> <td>4.257791</td> <td>Angry</td> </tr> <tr> <th>22</th> <td>-0.000372</td> <td>0.002558</td> <td>57.722183</td> <td>4.424116</td> <td>Miserable</td> </tr> <tr> <th>23</th> <td>0.000884</td> <td>0.004534</td> <td>31.542905</td> <td>3.119212</td> <td>Miserable</td> </tr> <tr> <th>24</th> <td>-0.002209</td> <td>-0.000254</td> <td>62.365436</td> <td>6.278034</td> <td>Relaxed</td> </tr> <tr> <th>25</th> <td>-0.003495</td> <td>0.002474</td> <td>62.691057</td> <td>6.775984</td> <td>Annoyed</td> </tr> <tr> <th>26</th> <td>-0.000142</td> <td>-0.009252</td> <td>52.386723</td> <td>6.254499</td> <td>Afraid</td> </tr> <tr> <th>27</th> <td>-0.000601</td> <td>-0.002673</td> <td>45.750873</td> <td>5.537992</td> <td>Excited</td> </tr> <tr> <th>28</th> <td>-0.002934</td> <td>0.005929</td> <td>35.486262</td> <td>4.347244</td> <td>Excited</td> </tr> <tr> <th>29</th> <td>-0.002131</td> <td>0.002095</td> <td>49.055195</td> <td>5.256263</td> <td>Happy</td> </tr> <tr> <th>30</th> <td>0.004173</td> <td>-0.001804</td> <td>51.143077</td> <td>5.439556</td> <td>Bored</td> </tr> <tr> <th>31</th> <td>-0.000224</td> <td>-0.006051</td> <td>40.074855</td> <td>3.727305</td> <td>Happy</td> </tr> <tr> <th>32</th> <td>-0.002232</td> <td>0.004002</td> <td>47.220204</td> <td>5.129865</td> <td>Afraid</td> </tr> <tr> <th>33</th> <td>-0.003202</td> <td>0.001654</td> <td>27.594398</td> <td>3.238834</td> <td>Annoyed</td> </tr> <tr> <th>34</th> <td>-0.002317</td> <td>0.000272</td> <td>63.977990</td> <td>4.435240</td> <td>Bored</td> </tr> <tr> <th>35</th> <td>-0.002719</td> <td>0.004786</td> <td>43.860434</td> <td>4.161989</td> <td>Annoyed</td> </tr> <tr> <th>36</th> <td>-0.000957</td> <td>0.000309</td> <td>41.176874</td> <td>2.883719</td> <td>Sad</td> </tr> <tr> <th>37</th> <td>-0.001290</td> <td>-0.000089</td> <td>55.583615</td> <td>5.272462</td> <td>Tired</td> </tr> <tr> <th>38</th> <td>-0.000217</td> <td>-0.004358</td> <td>49.607502</td> <td>6.279034</td> <td>Relaxed</td> </tr> <tr> <th>39</th> <td>-0.000071</td> <td>-0.002206</td> <td>38.600903</td> <td>5.021533</td> <td>Satisfied</td> </tr> <tr> <th>40</th> <td>-0.001090</td> <td>-0.001596</td> <td>68.660583</td> <td>4.984018</td> <td>Satisfied</td> </tr> <tr> <th>41</th> <td>-0.000999</td> <td>0.000668</td> <td>77.463016</td> <td>5.703841</td> <td>Mix</td> </tr> <tr> <th>42</th> <td>-0.001357</td> <td>0.000859</td> <td>54.578165</td> <td>4.464673</td> <td>Happy</td> </tr> <tr> <th>43</th> <td>0.003839</td> <td>0.004214</td> <td>42.680804</td> <td>4.096789</td> <td>Excited</td> </tr> <tr> <th>44</th> <td>-0.002007</td> <td>-0.000875</td> <td>55.284132</td> <td>4.743275</td> <td>Sad</td> </tr> <tr> <th>45</th> <td>0.004543</td> <td>0.002699</td> <td>44.558832</td> <td>4.904963</td> <td>Bored</td> </tr> <tr> <th>46</th> <td>0.000246</td> <td>0.000620</td> <td>34.547461</td> <td>3.294687</td> <td>Relaxed</td> </tr> <tr> <th>47</th> <td>-0.000669</td> <td>0.007457</td> <td>47.166044</td> <td>5.101586</td> <td>Pleased</td> </tr> <tr> <th>48</th> <td>-0.000959</td> <td>-0.000093</td> <td>48.413527</td> <td>4.118721</td> <td>Mix</td> </tr> </tbody> </table> </div> python with sns.axes_style("ticks"): sns.pairplot(df, hue='Emotion') plt.savefig('Figures/PairPlot.pdf', bbox_inches='tight') /home/tboudreaux/anaconda3/envs/general/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use arr[tuple(seq)] instead of arr[seq]. In the future this will be interpreted as an array index, arr[np.array(seq)], which will result either in an error or a different result. return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
png


# Periodic Behavior in Velocity python FTs_V = np.zeros(shape=(49, 2, 2000)) python count = 0 for did, dance in tqdm(enumerate(velocities), total=len(velocities)): if did != 9: f, pgram = genLSP(dance[0], dance[1], s=2000) FTs_V[count, 0] = f FTs_V[count, 1] = pgram count += 1 python for fid, FT in enumerate(FTs_V): plt.plot(FT[0], FT[1])
png


python stats_V = np.zeros(shape=(49, 3)) count = 0 for fid, FT in enumerate(FTs_V): stats_V[count] = np.array([FT[0][FT[1].argmax()], FT[1][FT[1].argmax()], np.mean(FT[1])]) count += 1 python fig, axs = plt.subplots(3, 1, figsize=(10, 10)) axs[0].plot(stats_V[:, 0], stats_V[:, 1], 'o') axs[1].plot(stats_V[:, 1], stats_V[:, 2], 'x') axs[2].plot(stats_V[:, 0], stats_V[:, 2], 's') [<matplotlib.lines.Line2D at 0x7fed82866c88>]
png


python df = pd.DataFrame(data=stats_V, columns=['Max Frequency', 'Max Amplitude', 'Standard Deviation']) df['Emotion'] = pd.Series(evalEmotions, index=df.index) python sns.pairplot(df, hue="Emotion") /home/tboudreaux/anaconda3/envs/general/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use arr[tuple(seq)] instead of arr[seq]. In the future this will be interpreted as an array index, arr[np.array(seq)], which will result either in an error or a different result. return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval <seaborn.axisgrid.PairGrid at 0x7fed80383ba8>
png


python

ascii_analysis.ipynb.1708703780.txt.gz · Last modified: 2024/02/23 07:56 by tboudreaux