Isochrone Fitting in Stellar Photometry
fit.py
This Python script is designed for fitting isochrones to Color-Magnitude Diagrams (CMDs) obtained from stellar photometry. It involves loading photometric data, isochrones, and fiducial sequences; performing optimizations to match these isochrones with observed stellar populations in CMDs based on chi-squared minimization; and handling the inputs/outputs for this process. It uses libraries such as NumPy for numerical operations, Matplotlib for plotting, and SciPy for optimization tasks. The script also supports command-line arguments for flexibility in selecting between different methods and adjusting parameters for the fitting process.
from photometry import load_HUGS, CMD_ridge_line_array, extract_pop, verticalize_CMD from isochrones import shift_isochrone, load_ISO_CMDs, interCMDatMag, interp_isochrone_age from fiducial import fiducial_points, iter_cut, two_point from functools import lru_cache import pickle as pkl import os import numpy as np from tqdm import tqdm import warnings # import matplotlib # matplotlib.use('Agg') import matplotlib.pyplot as plt from scipy.optimize import minimize from scipy.interpolate import interp1d from mplEasyAnimate import animation PHOT_ROOT = "../../photometry/HUGS/ngc2808" ISO_ROOT = "../../outputs" def pfD(r, I): # point function distance # r is a vector (x,y) to a point # I is some function, I(x) return lambda m: np.sqrt((I(m) - r[0])**2 + (m - r[1])**2) def get_ISO_CMD_Chi2(iso, fiducialLine, filters=("F606W", "F814W", "F606W"), distance=0, Av=0, plot=False, ANIM=None): isoFilter1Name = f"WFC3_UVIS_{filters[0]}_MAG" isoFilter2Name = f"WFC3_UVIS_{filters[1]}_MAG" isoFilter3Name = f"WFC3_UVIS_{filters[2]}_MAG" isoColor = iso[isoFilter1Name] - iso[isoFilter2Name] isoMag = iso[isoFilter3Name] isoAptMag, isoAptColor = shift_isochrone(isoColor, isoMag, distance, Av) f = interp1d(isoAptMag, isoAptColor, bounds_error=False, fill_value='extrapolate') diffs = fiducialLine[:, 0] - f(fiducialLine[:, 1]) # fig, ax = plt.subplots(1,1,figsize=(10,7)) # ax.plot(isoAptColor, isoAptMag) # ax.invert_yaxis() sortedFiducial = fiducialLine[fiducialLine[:,1].argsort()] # ax.plot(sortedFiducial[:,0], sortedFiducial[:,1],color='red') minDist = np.empty(shape=(sortedFiducial.shape[0])) minDist[:] = np.nan for idx, (point, d0) in enumerate(zip(sortedFiducial, diffs)): d = pfD(point, f) nearestPoint = minimize(d, 0, method='Nelder-Mead') if not nearestPoint.success: print("FAIL") mD = np.apply_along_axis(d, 0, sortedFiducial[:,1]) fig2, ax2 = plt.subplots(1,1) ax2.plot(sortedFiducial[:,1], mD) fig2.show() else: minDist[idx] = d(nearestPoint.x[0]) # ax.plot([point[0], f(nearestPoint.x[0])],[point[1], nearestPoint.x[0]],color='green') # plt.show() minDist = minDist[~np.isnan(minDist)] chi2 = np.sum(np.apply_along_axis(lambda x: x**2,0,minDist))/minDist.shape[0] # chi2 = sum(map(lambda x: x**2, diffs))/len(diffs) return chi2 def optimize(fiducial, isochrone, filters,plot=False, ANIM=None): age_d_E_opt = lambda iso, cmd, age, d, E: get_ISO_CMD_Chi2( interp_isochrone_age(iso, age), fiducial, distance=d, Av=E, filters=filters, plot=plot, ANIM=ANIM) optimized = minimize( lambda x: age_d_E_opt(isochrone, photometry, x[0], x[1], x[2]), [12, 10000, 0.06], bounds=[ (5,20), (5000, None), (0,0.3) ], ) return {'opt': optimized, 'iso': isochrone, 'fiducial': fiducial} def order_best_fit_result(optimizationResults): comparison = {'A': list(), 'E': list()} for pop, popD in optimizationResults.items(): for Y, YD in popD.items(): for a, aD in YD.items(): comparison[pop].append((aD['opt']['fun'], aD['opt']['x'], pop, Y, a)) comparison[pop] = sorted(comparison[pop], key=lambda x: x[0]) return comparison if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Fit an isochrones to a CMD") method = parser.add_mutually_exclusive_group(required=True) method.add_argument("--meth1", help="Use HUGS Method 1", action='store_true') method.add_argument("--meth2", help="Use HUGS Method 2", action='store_true') method.add_argument("--meth3", help="Use HUGS Method 3", action='store_true') parser.add_argument("--fLines", help="Fiducial piclke file", default="Fiducial.pkl") parser.add_argument("--filter1", help="Magnitude filter", default="F606W") parser.add_argument("--filter2", help="Second Color Filter", default="F814W") parser.add_argument("--rFilterOrder", action="store_true", help="flip which filter in the color is the magnitude axis") parser.add_argument("--verbosePlotting", action="store_true", help="Write out a lot of plots") parser.add_argument("-o", "--output", type=str, default="OptResult.pkl", help="Where to save Pickle File") args = parser.parse_args() if args.rFilterOrder: f3 = args.filter2 else: f3 = args.filter1 f1 = args.filter1 f2 = args.filter2 with open(os.path.join(PHOT_ROOT, "photometry.pkl"), 'rb') as f: photometry = pkl.load(f) if args.meth1: methID = 1 elif args.meth2: methID = 2 elif args.meth3: methID = 3 else: raise RuntimeError("Something Horrid has gone wrong! You should re-evalute the choices which lead you here...") cleanedPhot = photometry[methID] ISOs = load_ISO_CMDs(ISO_ROOT) print(ISOs.keys()) print(ISOs['A'].keys()) with open(args.fLines, 'rb') as f: fiducialSequences = pkl.load(f) fiducialLookup = dict() for i, fid in enumerate(fiducialSequences): fiducialLookup[fid.name] = i results = dict() popFid = None for population, popISO in tqdm(ISOs.items(), total=len(ISOs), leave=False): results[population] = dict() assert population in fiducialLookup.keys() print(population) # if population == "A": # popFid = fiducialSequences[fiducialLookup['A']] # if population == "E": # popFid = fiducialSequences[fiducialLookup['E']] # for Y, YISO in tqdm(popISO.items(), total=len(popISO), leave=False): # results[population][Y] = dict() # for a, alphaISO in tqdm(YISO.items(), total=len(YISO), leave=False): # results[population][Y][a] = optimize(popFid.mean, alphaISO, (f1, f2, f3)) # # orderedOptimizationResults = order_best_fit_result(results) # with open(args.output, 'wb') as f: # pkl.dump({'bf': orderedOptimizationResults, 'r': results, 'phot': cleanedPhot}, f)