Isochrone Shift and Interpolation in Astronomy
isochrones.py
This python file, named 'isochrones.py', is dedicated to manipulating and interpolating astronomical isochrones. It includes functions for shifting isochrones based on distance and extinction, loading stellar evolutionary tracks or isochrones from Color-Magnitude Diagram (CMD) pickle files found within a specified directory, and interpolating these isochrones for given stellar ages. The file applies computational physics and astrophysics techniques to model and analyze the properties and evolutionary states of stellar populations.
import numpy as np import pickle as pkl import pathlib import re from tqdm import tqdm from scipy.interpolate import interp1d def shift_isochrone(color, magnitude, distance : float, extinction : float): mu = 5*np.log10(distance) - 5# + extinction aptMag = mu + magnitude aptCol = 3.2*extinction + color return aptMag, aptCol def load_ISO_CMDs(root): CMDs = list(map(lambda x: str(x), pathlib.Path(root).rglob("CMD.pkl"))) extract = list(map(lambda x: re.findall(r"Pop(A|E)\+(\d\.\d+)\/alpha-(\d\.\d+)\/", x)[0], CMDs)) pops = set(map(lambda x: x[0], extract)) Ys = set(map(lambda x: x[1], extract)) alphas = set(map(lambda x: x[2], extract)) lookup = dict() for pop in tqdm(pops, leave=False): lookup[pop] = dict() for Y in tqdm(Ys, leave=False): lookup[pop][float(Y)] = dict() for alpha in tqdm(alphas, leave=False): if checkTup := (pop, Y, alpha) in extract: extractID = extract.index((pop, Y, alpha)) with open(CMDs[extractID], 'rb') as f: CMD = pkl.load(f) lookup[pop][float(Y)][float(alpha)] = CMD return lookup def interCMDatMag(color, mag, targetMag): f = interp1d(mag, color) return f(targetMag) def interp_isochrone_age(iso, targetAge): logTargetAgeYr= np.log10(targetAge*1e9) ageKeys = list(iso.keys()) distance = [(x-logTargetAgeYr, x) for x in ageKeys] below = sorted(filter(lambda x: x[0] <=0, distance), key=lambda x: abs(x[0])) above = sorted(filter(lambda x: x[0] > 0, distance), key=lambda x: x[0]) isoBelow = iso[below[0][1]] isoAbove = iso[above[0][1]] age1 = isoBelow['log10_isochrone_age_yr'].iloc[0] age2 = isoAbove['log10_isochrone_age_yr'].iloc[0] def linearinterpolate(x, other, age1, age2): newIso = ((other[x.name] - x)/(age2-age1)) * (logTargetAgeYr - age1) + x return newIso interpolated = isoBelow.apply(lambda x: linearinterpolate(x, isoAbove, age1, age2)) return interpolated