Reading MIST Isochrone Files
Provides functions to read and parse MIST formatted isochrone files, extracting either detailed data tables as pandas DataFrames organized by age or essential metadata, including version details and initial conditions.
import re import pandas as pd from io import StringIO from itertools import islice from typing import Any def read_iso(filename: str) -> dict[float, pd.DataFrame]: """ Read in a MIST formated isochrone to a list of DataFrame Parameters ---------- filename : str filepath pointing to the isochrone file Returns ------- isos : dict[float, pd.DataFrame] Dictionary of isochrones loaded and indexed by their ages in Gyr """ with open(filename) as f: contents = f.read() lines = contents.split("\n") tabSep = r"((?:# number of EEPs, cols =\s+)(\d+)(?:\s+)(\d+))" tables = map(lambda x: (x[0], re.search(tabSep, x[1])), enumerate(lines)) fTables = list(filter(lambda x: x[1], tables)) sepTables = map(lambda x: lines[x[0][0] : x[1][0]], zip(fTables[:-1], fTables[1:])) isos = dict() for table in sepTables: header = re.findall(r"[^\s\\#]+", table[2]) okayTab = filter(lambda x: x != "" and x.lstrip()[0] != "#", table) strTab = "\n".join(okayTab) df = pd.read_csv(StringIO(strTab), sep=r"\s+", names=header) if df.shape[0] > 0 and isinstance(df, pd.DataFrame): age = 10 ** df["log10_isochrone_age_yr"].iloc[0] df["age"] = 10 ** df["log10_isochrone_age_yr"] isos[age] = df return isos def read_iso_metadata(filename: str) -> dict[str, Any]: """ Efficiently read in isochrone metadata without opening entire file Parameters ---------- filename : str filepath pointing to the isochrone file. Returns ------- metadata : dict[str, Any] Dictionary of metadata relating to isochrone pulled from the first 7 rows of the isochrone file. """ with open(filename) as f: rawHeader = list(islice(f, 9)) photometry = ( True if any(["photometric system" in headerLine for headerLine in rawHeader]) else False ) MESAVersion = rawHeader[0].split("=")[1].rstrip().lstrip() MESARevision = rawHeader[1].split("=")[1].rstrip().lstrip() if photometry: photometricSystem = rawHeader[2].split("=")[1].rstrip().lstrip() numRowID = 5 else: photometricSystem = None numRowID = 4 numRow = [float(x) for x in rawHeader[numRowID][1:].rstrip().lstrip().split()] metadata = { "MESAVersion": MESAVersion, "MESARevision": MESARevision, "Yinit": numRow[0], "Zinit": numRow[1], "[Fe/H]": numRow[2], "[a/Fe]": numRow[3], "v/vcrit": numRow[4], "photometricSystem": photometricSystem, } return metadata